
HTTP Message Signatures
HTTP Interim
Feb 1, 2022

Justin Richer and Annabelle Backman

● Detached signature mechanism for generic HTTP messages
○ Request and response
○ Works* across HTTP versions

● Robust against expected changes
○ Proxy injection of header fields
○ Partial signature of stable aspects of message

● Allows multiple signatures
○ Including adding signatures over time

● Uses HTTP-native technologies
○ Structured Fields for encoding

What is it?

HTTP Message

Signature Input

Signature Output

● Inputs:
○ HTTP Message
○ Key material
○ Required components

● Functions:
○ Cryptographic primitives: HTTP_SIGN (M, Ks) -> S
○ Key derivation (where needed)
○ Message hashing (where needed)
○ Binary encoding (where needed)

● Outputs:
○ Message signature
○ Signature parameters

HTTP Signature Process

● Inputs:
○ HTTP Message
○ Key material
○ Signature parameters (includes covered components)
○ Message signature

● Functions:
○ Cryptographic primitives: HTTP_VERIFY (M, Kv, S) -> V
○ Key derivation (where needed)
○ Message hashing (where needed)
○ Binary encoding (where needed)

● Outputs:
○ Boolean verification status

HTTP Signature Verification Process

Draft Status: -08

● Security and privacy considerations added to document
● Significant editorial clarifications
● Updated examples
● Updated cryptographic primitives
● Added ABNFs
● Renamed “Specialty” components to “Derived” components

Crypto Updates

● Ed25519
○ Uses PureEdDSA (no message hashing)

● ECDSA signature encoding
○ Uses raw signature encoding (no ASN.1)

● Non-deterministic algorithms (RSA PSS, ECDSA) are pointed out

Implementation Status

● Java implementation
○ XYZ GNAP implementation on Spring, Apache HTTP Components

● Python implementation (behind httpsig.org and in-doc examples)
● Scala library
● JavaScript (in-browser)
● Rust library (update of Cavage-draft implementation)
● Go library (from scratch)
● Should we add these to httpsig.org as they become usable?

Relationship to Digest

● Message signatures don’t protect message content
● Digest only protects message content (or representation)

○ No keys (body and hash can be swapped by attacker)
● But:

○ Digest encapsulates message content into a header field
○ We can sign header fields!

● Applications of Signatures are likely to need Digest too

Relationship to Signed HTTP Exchanges

● Signed HTTP Exchanges
○ Individual draft, targeted at WPACK
○ Expired

● Message signatures should be able to do everything that exchanges does
● Are there any next steps to make sure it can be used?

HTTP Signature Playground
 https://httpsig.org/

IETF 113

● GNAP Hackathon
○ Using HTTP Signatures as baseline key proofing method

● Approaching WGLC?

