
Client Hint Reliability
David Benjamin (davidben@google.com)
HTTPWG 2020 Interim



Client Hints

● https://tools.ietf.org/html/draft-ietf-httpbis-client-hints-15
○ In AUTH48 state

● Moves HTTP content negotiation from passive to active
○ Server declares request headers it is interested in
○ Client sends request headers it is willing to send
○ Client maintains a cache of server preferences

● Bandwidth and privacy improvements
○ No wasting bytes on unused request headers
○ Sites need to request fingerprintable surfaces (easier to measure, monitor, budget, etc.)



Inconsistent Behavior

GET /first-page HTTP/1.1
HTTP/1.1 200 OK
Accept-CH: Device-Memory
Vary: Device-Memory

Here’s the default version of the page.
<a href=“/second-page”>Next page</a>

GET /second-page HTTP/1.1
Device-Memory: 0.5

HTTP/1.1 200 OK
Accept-CH: Device-Memory
Vary: Device-Memory

Here’s the low-memory version of the page.



The Reliability Problem

● Server preferences are delayed by one request
○ Hints are missing on first page visit
○ Changes in server preferences apply late

● Okay for optimizations, not for meaningful content variations
● Clearing Accept-CH cache can break pages
● Example: User-Agent Client Hints

○ https://wicg.github.io/ua-client-hints/

Goal: The client should reliably incorporate server preferences
into request. (It may still decline to send the hint!)



Critical-CH

● Server does not know if client would have sent header
● Client does not know if content variation is meaningful
● Critical-CH header

○ Contains a list of client hints that would meaningfully change this resource
○ Like Vary, but tells the client this is worth an RTT hit
○ Client updates Accept-CH cache and decides if it would have sent a listed header
○ If so, cancel the old stream and retry the request
○ Otherwise, use the response as is

● Accept-CH cache can now be freely cleared



Critical-CH Example

The client initially sends no hints.

GET / HTTP/1.1

HTTP/1.1 200 OK
Accept-CH: Sec-CH-Example, Sec-CH-Example-2
Vary: Sec-CH-Example
Critical-CH: Sec-CH-Example

Here’s the default version of the page.

If the client would have sent the hints, it retries. Otherwise, it uses the resource as-is.

GET / HTTP/1.1
Sec-CH-Example: 1
Sec-CH-Example-2: 2

HTTP/1.1 200 OK
Accept-CH: Sec-CH-Example, Sec-CH-Example-2
Vary: Sec-CH-Example
Critical-CH: Sec-CH-Example

Here’s a more specific version of the page.



ACCEPT_CH and ALPS

● Retries cost a round-trip
● TLS 1.3 establishes encryption earlier
● Send server preferences in ACCEPT_CH frame, alongside SETTINGS

○ But SETTINGS are not reliable.
● Application Layer Protocol Settings (ALPS)

○ draft-vvv-tls-alps and draft-vvv-httpbis-alps
○ Protocol-specific data sent in TLS EncryptedExtensions
○ Like ALPN, available before application data
○ Rationalizes SETTINGS, NewSessionTicket, and 0-RTT interaction

■ https://github.com/quicwg/base-drafts/issues/3086
○ Some H2/H3 settings otherwise not possible

■ https://github.com/quicwg/base-drafts/issues/3622



Alternatives Considered

● Only have ACCEPT_CH?
○ Not reliable in edge cases, so just an optimization

■ Cross-name connection reuse
■ Long-lived connections
■ Older server software

● Only have Critical-CH?
○ RTT hit on all first page loads is prohibitive

● Vary instead of Critical-CH?
○ Client cannot distinguish between optimizations and meaningful differences

● SETTINGS_ACCEPT_CH instead of new frame?
○ HTTP/2 settings can only be integer-valued



Open Questions

● Layering between Client Hints, HTTP, and TLS
○ ACCEPT_CH and ALPS are one way to layer things
○ draft-bishop-httpbis-extended-settings-01?
○ TLS 1.3 half-RTT data?

■ This one is less practical than it sounds.
● Layering between HTTP intermediary and origin

○ .well-known resource?
○ Origin Policy?

● Service Workers



Questions?

● https://tools.ietf.org/html/draft-davidben-http-client-hint-reliability-01
● https://tools.ietf.org/html/draft-vvv-httpbis-alps-00
● https://tools.ietf.org/html/draft-vvv-tls-alps-01


