
HTTP/2.0 Stuff
For SF Interim 2013-06-13/14



Change Summary



Editorial mostly, of note:
• Session -> Connection
• Wanted to avoid confusion with cookies, etc…

• ALPN
• Header continuations
• Can’t be interrupted



Stack structure
Aka: Layers, Tiers




Packets arrive, split them into frames

Framing



Header decompression is global

Connection Flow Control*

Header Compression

Frames with headers
• HEADERS+PRIORITY
• HEADERS
• PUSH_PROMISE



Deal with connection control
Connection frames:
• GOAWAY
• PING
• SETTINGS
• WINDOW_UPDATE (Stream 0)

Header Compression

Connection Control

Once handled, processing ends

Framing

Connection Flow Control



Demultiplex streams

Stream Demultiplexing

Header Compression

Connection Control

Framing

Connection Flow Control



Stream control needs handling

Stream Demultiplexing

Header Compression

Connection Control

Framing

Stream Control

Connection Flow Control



Some frames affect flow control

Stream Demultiplexing

Header Compression

Connection Control

Framing

Stream Control
Stream Flow Control

“Some” = just DATA

Connection Flow Control



The remaining frames are passed to 
HTTP

Stream Demultiplexing

Header Compression

Connection Control

Framing

Stream Control

Request
Response

Push

Connection Flow Control

Stream Flow Control

At this layer, sequences of frames
turn into requests, responses and pushes



Stream Life Cycle



What you think you have
I say, shall we start 
the next stream?

Jolly good, 
commence.

Here the stream we 
agreed upon.

Very well, I shall 
reciprocate with 
my own stream.



In practice, it’s a lot messier than that
• Streams aren’t negotiated – that’s too slow

• Sending stuff on a stream creates the stream
• Streams can be cancelled before they really start

• It’s not clear if RST_STREAM can be ignored if the stream ID hasn’t 
been used

• Pushing can cause streams identifiers to appear out of order
• Streams are open or closed in each direction
• There’s a need to send messages on streams after they are 

closed
• See #104

https://github.com/http2/http2-spec/issues/104
https://github.com/http2/http2-spec/issues/104


I tried to draw a state machine here
• But it’s a little complicated

All Quiet

Outbound Active/
Inbound Quiet

Outbound Half-
Closed/

Inbound Quiet

Outbound Quiet/
Inbound Active

Both Active

Outbound Half-
Closed/

Inbound Active

Outbound Quiet/
Inbound Half-Closed

Outbound Active/
Inbound Half-Closed

Both Closed



Simple model
• Independent lifecycles in each direction, each with 3 

states:
Quiet

Noisy

Quiet
(Permanently)



Consequences: Concurrent Stream 
Counting
• Currently, streams are counted as “open” if a stream in 

either direction is open
• That leaves a gap in some cases where streams aren’t counted

• Solution depends on whether we are
• Limiting open streams, or 
• Limiting the streams AND the processing associated with them



Suggestion: Limit streams AND 
processing
• Stream limit imposed by receiver only applies to streams that 

the sender is responsible to creating (odd for client, even for 
server)
• Conjugate stream is not counted by default (at streams layer)

• Receiver can send RST_STREAM (REFUSED) if they don’t want the 
stream

• At HTTP layer, force the client to limit requests
• Request streams (client initiated) are counted toward limit until the 

response is received and done
• Push streams (server initiated) are counted until the push is done

• i.e., they follow the default rule above



Opening a stream
• Send any message, or
• Send one of a specific set of messages

• e.g., HEADERS, HEADERS+PRIORITY

• Suggestions:
• No good reason to require a specific message at the streams layer
• HTTP always needs HEADERS or HEADERS+PRIORITY (other uses, 

maybe not)
• undefined semantics => stream error

• Note: PUSH_PROMISE could be treated as a connection error



Early RST_STREAM
• What happens when RST_STREAM arrives for a far-future stream?
• Need something that somewhat resembles this for streams 

mentioned in PUSH_PROMISE
• This could be invisible to the streams layer,
• … except to the extent that a reservation is put in place to enable 

cancellation

• Suggestions:
• RST_STREAM is a request to stop sending, not a promise to stop sending

• Therefore, require that it include a FINAL flag
• Allow implementations to ignore RST_STREAM unless:

• It is preceded by other frames; i.e., the stream is already open
• The stream ID is reserved (as PUSH_PROMISE does)



WINDOW_UPDATE (#104)
• As defined, these can’t be sent in a lot of cases

• e.g., FINAL on a GET request prevents responses from being sent
• Also applies to RST_STREAM and PRIORITY
• Need to allow this to be sent after FINAL, but under what 

terms?

• Suggestion:
• Create a distinction between “on-stream” frames and “about-

stream” frames
• On-stream: DATA, HEADERS, HEADERS+PRIORITY, PUSH_PROMISE
• About-stream: RST_STREAM, PRIORITY

https://github.com/http2/http2-spec/issues/104
https://github.com/http2/http2-spec/issues/104


Why don’t we flow control headers?
• We distinguish between DATA and everything else for flow 

control
• We are creating a new “on”/“about” distinction
• Could this be the same distinction?

• Flow control for header-bearing frames would close some 
DoS holes

• And, is there any value in making this distinction explicit 
(through a flag or a bit in the frame type byte)?


