
HTTP/2 Compression Dictionaries

Vlad Krasnov



In a nutshell

● Allow cross-stream compression in HTTP/2 by means of "dictionaries"
● Including a set(s?) of static dictionaries for initialization

○ Each dictionary targets a different MIME type
● Up to 256 dictionaries per connection
● Default dictionary size is 217

○ Defined by settings
● Server indicates if a stream might be used for compression in the 

future by sending a SET_DICTIONARY frame, before the data
○ Client keeps part of the data

● Server can use a previously defined dictionary with a USE_DICTIONARY 
frame



Rationale
● Yesterday

○ HTTP/1 with large assets
○ CPU time was expensive
○ Static assets compressed only with "gzip"

■ What about "brotli", "sdch", "sdch+gzip", "sdch+brotli"?
● Today

○ HTTP/2 with (ideally) smaller assets
○ CPU time significantly cheaper

■ Cloudflare uses gzip -8 for dynamic compression
■ Tomorrow: FPGAs

○ Store in gzip -> compress to other formats on demand
● Network

○ Gets cheaper, but slowly
○ Less data -> less packet loss



Benefits
● Client

○ Less bandwidth wasted
■ Reduced packet loss
■ Faster page loads

● Server
○ Less bandwidth wasted
○ Improved compression ratio almost for free

■ Alternatively: keep compression ratio, reduce CPU usage
○ Greater incentive to re-compress static content

● CDN
○ Highly efficient origin pulls

■ Almost free in many cases



Performance simulation 

● Crawled over ~2000 Alexa top
● Used Chromedriver to load each page
● Simulated cross-stream compression with gzip and brotli
● Several compression strategies and dictionary sizes
● Best overall strategy:

○ If asset first of its type -> use static dictionary for type
○ Else use dynamic dictionary for type
○ Append asset to the dictionary for the type



Performance



Performance



Performance



Performance



Performance

● Brotli -5 w. dict vs. Brotli -8 : 1.30X (2-3 times faster)
● Brotli -5 w. dict vs. Deflate -8: 1.46X (slightly slower)
● For reference: Deflate -8 vs Deflate -4: 1.04X (2 

times slower)



Security
● Main concern: BREACH like attacks

○ Very likely that BREACH will be easier to execute
○ All BREACH mitigation techniques apply

■ Cross-referenced requests should not be compressed
■ Masking CSRF tokens etc.

○ In addition
■ Disabled by default, needs to be actively enabled (unlike HPACK)
■ Let client disable compression for a given stream (HEADER flag?)

● Client has better knowledge who initiated a request
■ Intermediates are not allowed to use, unless instructed by origin

● Most websites are still non HTTPS
○ Improving HTTP/2 gives greater incentive to migrate
○ Most HTTPS websites aren't sensitive



How it compares to SDCH?
● This can definitely work with VCDIFF as well
● No need for a huge dictionary download
● Don't have to use the whole stream as dictionary
● Brotli has much higher compression ratio than SDCH+Brotli in 

cross-stream compression
● Appending streams, improves efficiency
● Fine-grained control in the protocol layer, improves efficiency, 

allows multiplexing
● Minimal overhead



CPU overhead

● No brainer for dynamic content
○ The overhead required to set a (large) dictionary, can be 

completely eliminated by slight modification of the 
compression API

● For static content: do you have to recompress the whole file?
○ You only need to recompress up to the sliding window size! 


