
Decomposing HTTP

There are lots of HTTPs

 HTTP/0.9, HTTP/1.0,

HTTP/1.1

 ASCII-ish octets over TCP

 HTTP/2

 Binary framing layer

over TCP

 HTTP/1.1 over SCTP

 HTTPU and HTTPUM

 Subset over UDP

 CoAP

 Super/Subset over

UDP/TCP

 QUIC

 Binary framing layer

over UDP

Application

HTTP

TLS/DTLS?

Transport

HTTP isn’t that monolithic

 Similar concepts exposed to app regardless of

version

 Wildly different capabilities from transport

Does that mean the richness of TCP isn’t needed (since UDP works)?

Application

HTTP

TLS/DTLS?

Transport

Key Idea: Implicit middle layer

Application

Semantic HTTP

Transport-Specific Mapping

Auth &

encryption?

Transport

Loss

detection /

recovery?

Compression?Parallelism?

Connection

management

& lifetime

Framing

Middle layer: Thick or thin?

 Semantic HTTP requires certain properties

 No transport has all of them; some have most, others very few

 Largely unchanged HTTP/1.0 vs. HTTP/1.1 vs. HTTP/2

 Mapping HTTP to a transport requires plugging the gaps

 Mapping defines a middle layer that implements anything the transport doesn’t provide

 Transport + Mapping is effectively an “idealized” transport for HTTP

 Alternative: Subset HTTP functionality to avoid the gaps

 HTTP/1.x: Simple mapping to TCP

 ASCII-like message framing

 Independent TCP flows to provide parallelism

 HTTP/2: Rich mapping to TCP

 Full multiplexing layer with binary framing and multiplexing

Perils of Forgetting

 Connection: and Proxy-Connection: headers in HTTP/1.1

 See RFC 7230 A.1.2

 CoAP’s continuing evolution

 RFC 7252: Basic reliability over UDP/DTLS, no large messages

 But then:

 draft-ietf-core-block – messages bigger than a single datagram

 draft-bormann-core-cocoa - …and congestion control

 draft-ietf-core-tcp-tls – just use TCP!

 HTTP/2 framing layer

 Semi-goal during design to keep the framing layer reusable by non-HTTP protocols

 HTTP-specific concepts crept in anyway

 Non-HTTP users would have to define a new, strikingly similar framing layer

And then there’s QUIC….

 Is QUIC another HTTP-over-UDP mapping?

 Peer of HTTP/1.1, HTTP/2, HTTPU, CoAP, etc.?

 Or is QUIC another transport protocol over which HTTP can be mapped?

 Peer of TCP, SCTP, UDP, etc.?

 Reality: It’s currently both, in the same document.

QUIC (Quick UDP Internet Connection) is a new multiplexed and secure

transport atop UDP, designed from the ground up and optimized for HTTP/2

semantics. While built with HTTP/2 as the primary application protocol, QUIC

builds on decades of transport and security experience, and implements

mechanisms that make it attractive as a modern general-purpose transport.

QUIC provides multiplexing and flow control equivalent to HTTP/2, security

equivalent to TLS, and connection semantics, reliability, and congestion

control equivalent to TCP.

What does it mean?

 Somewhat philosophical – no immediate actions here

 The definition of “Semantic HTTP” is still really thin; does it matter?

 Transports once asked for a list of services we ideally want from the transport

below us. Is this the list?

 Ideas to keep in mind with our next newly-defined HTTP mapping:

 Does QUIC belong in HTTP WG, or somewhere in Transports area?

 Need to limit cross-contamination of HTTP concepts with mapping-internal

concepts

