
Decomposing HTTP

There are lots of HTTPs

 HTTP/0.9, HTTP/1.0,

HTTP/1.1

 ASCII-ish octets over TCP

 HTTP/2

 Binary framing layer

over TCP

 HTTP/1.1 over SCTP

 HTTPU and HTTPUM

 Subset over UDP

 CoAP

 Super/Subset over

UDP/TCP

 QUIC

 Binary framing layer

over UDP

Application

HTTP

TLS/DTLS?

Transport

HTTP isn’t that monolithic

 Similar concepts exposed to app regardless of

version

 Wildly different capabilities from transport

Does that mean the richness of TCP isn’t needed (since UDP works)?

Application

HTTP

TLS/DTLS?

Transport

Key Idea: Implicit middle layer

Application

Semantic HTTP

Transport-Specific Mapping

Auth &

encryption?

Transport

Loss

detection /

recovery?

Compression?Parallelism?

Connection

management

& lifetime

Framing

Middle layer: Thick or thin?

 Semantic HTTP requires certain properties

 No transport has all of them; some have most, others very few

 Largely unchanged HTTP/1.0 vs. HTTP/1.1 vs. HTTP/2

 Mapping HTTP to a transport requires plugging the gaps

 Mapping defines a middle layer that implements anything the transport doesn’t provide

 Transport + Mapping is effectively an “idealized” transport for HTTP

 Alternative: Subset HTTP functionality to avoid the gaps

 HTTP/1.x: Simple mapping to TCP

 ASCII-like message framing

 Independent TCP flows to provide parallelism

 HTTP/2: Rich mapping to TCP

 Full multiplexing layer with binary framing and multiplexing

Perils of Forgetting

 Connection: and Proxy-Connection: headers in HTTP/1.1

 See RFC 7230 A.1.2

 CoAP’s continuing evolution

 RFC 7252: Basic reliability over UDP/DTLS, no large messages

 But then:

 draft-ietf-core-block – messages bigger than a single datagram

 draft-bormann-core-cocoa - …and congestion control

 draft-ietf-core-tcp-tls – just use TCP!

 HTTP/2 framing layer

 Semi-goal during design to keep the framing layer reusable by non-HTTP protocols

 HTTP-specific concepts crept in anyway

 Non-HTTP users would have to define a new, strikingly similar framing layer

And then there’s QUIC….

 Is QUIC another HTTP-over-UDP mapping?

 Peer of HTTP/1.1, HTTP/2, HTTPU, CoAP, etc.?

 Or is QUIC another transport protocol over which HTTP can be mapped?

 Peer of TCP, SCTP, UDP, etc.?

 Reality: It’s currently both, in the same document.

QUIC (Quick UDP Internet Connection) is a new multiplexed and secure

transport atop UDP, designed from the ground up and optimized for HTTP/2

semantics. While built with HTTP/2 as the primary application protocol, QUIC

builds on decades of transport and security experience, and implements

mechanisms that make it attractive as a modern general-purpose transport.

QUIC provides multiplexing and flow control equivalent to HTTP/2, security

equivalent to TLS, and connection semantics, reliability, and congestion

control equivalent to TCP.

What does it mean?

 Somewhat philosophical – no immediate actions here

 The definition of “Semantic HTTP” is still really thin; does it matter?

 Transports once asked for a list of services we ideally want from the transport

below us. Is this the list?

 Ideas to keep in mind with our next newly-defined HTTP mapping:

 Does QUIC belong in HTTP WG, or somewhere in Transports area?

 Need to limit cross-contamination of HTTP concepts with mapping-internal

concepts

