
Application Layer Protocol
Negotiation

TLS extension for application layer
protocol negotiation within the TLS

handshake

Background and Design Goals

HTTPBis WG requested TLS support for
negotiating application layer protocols such as
HTTP 1.1 and HTTP 2.0.

Design goals:

• Negotiate application layer protocol for the
connection.

• Minimize connection latency.

• Align with existing TLS extensions.

Full TLS Handshake with ALPN

Abbreviated TLS Handshake with ALPN

ALPN Extension Structure
• The "extension_data" field of the ALPN extension SHALL

contain a "ProtocolNameList" value.

opaque ProtocolName<1..2^8-1>;
struct {

ProtocolName protocol_name_list<2..2^16-1>
} ProtocolNameList;

• When sent with the ClientHello message,
"ProtocolNameList" contains the list of protocols advertised
by the client, in descending order of preference.

• When sent with the ServerHello message,
"ProtocolNameList" MUST contain exactly one
"ProtocolName“ representing the selected protocol.

Protocol IDs and Protocol Selection

• Protocols IDs are IANA registered, opaque,
non-empty byte strings.

• Initial registrations have been requested for
HTTP/1.1, SPDY/1, SPDY/2, SPDY/3.

• If the server supports no protocols that the
client advertises, the server SHALL respond
with a fatal "no_application_protocol" alert.

ALPN Design Considerations

• Protocol selection on the server allows
certificate to be chosen based on the
negotiated protocol.

• The negotiated protocol is known after the
first network roundtrip.

• The "extension_data" field of the ALPN
extension allows re-use of the existing parsers.

• TLS renegotiation can be used to negotiate an
application protocol with confidentiality.

Changes Since IETF87

• Experimental namespace removed per best
current practice RFC 6648.

• HTTP/2 protocol ID removed from the initial
registrations with the intent that the HTTPbis
WG request the appropriate protocol ID(s).

• More specific protocol registry information in
the IANA section.

• TLS working group last call for the ALPN draft
has completed.

Available Implementations & Tools

• ALPN is implemented in several HTTP/2
prototypes, including Katana, Mozilla,
Chromium, iij-http2, GFE.

• ALPN patch for OpenSSL contributed by
Google.

• ALPN support for Wireshark network analyzer
contributed by Akamai.

ALPN Deployment

• *.google.com servers have ALPN enabled.
• Google Chrome and IE11 support application

protocol negotiation via ALPN.
• F5/BIG-IP FW versions older than 10.2.4 cannot

handle ClientHello messages longer than 255
bytes. This is a general issue e.g. when adding
cipher suites, extensions, or using SNI with a long
server name. The use of ALPN extension can also
expose this bug.

• We’re reaching out to sites using obsolete
F5/BIG-IP firmware. If you run one of these sites,
please upgrade!

Links and Contact Information

• ALPN Draft: http://datatracker.ietf.org/doc/draft-
ietf-tls-applayerprotoneg

• OpenSSL implementation of ALPN by Google:
http://git.openssl.org/gitweb/?p=openssl.git;a=c
ommit;h=6f017a8f9db3a79f3a3406cf8d493ccd34
6db691

• Stephan Friedl sfriedl@cisco.com
• Andrei Popov andreipo@microsoft.com
• Adam Langley agl@google.com
• Emile Stephan emile.stephan@orange.com

http://datatracker.ietf.org/doc/draft-ietf-tls-applayerprotoneg
http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=6f017a8f9db3a79f3a3406cf8d493ccd346db691
mailto:sfriedl@cisco.com
mailto:andreipo@microsoft.com
mailto:agl@google.com
mailto:emile.stephan@orange.com

