
SPDY and What to
Consider for HTTP/2.0

mike belshe

SPDY started over 3 years ago

Reduced latency is now proven

It's better for the network

Let's focus on interoperability

Why am I here?

Who is using SPDY?

● Google Chrome &
All Google Web Properties

● Mozilla Firefox

● Twitter

● Amazon Silk

● Others: Cotendo, Strangeloop, iPhone client, Apache mod-spdy, nginx
beta, jetty, netty, libraries in python, node.js, erlang, ruby, go, and C

How did SPDY come to be?

wanted reduced web page latency for users

What SPDY is Not

A transport layer protocol (like TCP)

Rocket Science

Cheap Compression Tricks

What SPDY is

An amalgam of well-known ideas based on
performance data:

multiplexing
prioritization
compression
server push

transparent to HTTP app servers
deployable today

● Better for the network

● Better for Mobile
HTTP is not just for HTML
Battery life matters

Real deployment has shown also

Background: What is a WebPage?

●86 resources

●13 hosts

●800+KB

●only 66% compressed (top sites are ~90%
compressed)

Background: Poor Network Utilization

More Bandwidth Doesn't Help

But Reducing Round Trip Time Does

Background: HTTP Connections

2010: Average 29 connections per page.

SPDY Features

1. Multiplexing

● Small, fixed length frames

● Fully interleaved streams

● Streams can be created by either endpoint
with zero round trips.

● Many implementors have remarked it's easy
to implement!

Before Multiplexing

After Multiplexing

2. Prioritization

● Not all requests are equal!

● Failure to prioritize is actually slower

● Must consider two metrics:
○ Time to first render
○ Overall Page Load Time

● SPDY allows client-specified priorities with
server best effort to deliver

3. Header Compression

● SPDY uses stateful
compression across
requests

● Using zlib,
achieves 85-90%
compression

● Don't care if compressor
is zlib; only care about
session state.

● Must be mandatory

Compression Savings

Better Networking

SPDY "Less is More"
Connections

SPDY "Less is More"
Uplink data

SPDY "Less is More"
Downlink data

SPDY "Less is More"
Total Packets

Performance Results

Google Results

Cotendo Tests

Amazon.com home

HTTP

3G AT&T
~200ms RTT

PLT: 12.50 secs

Cotendo Tests

Amazon.com home

SPDY

3G AT&T
~200ms RTT

PLT: 6.26 secs
-49%

Other results

● Firefox confirmed Chrome results

● Google recently reported that SPDY over
SSL is now faster than HTTP without SSL

● BoostEdge paper confirms Google numbers

● need vendors to publish more!

Deployment
A Process of Elimination

● Transport choices: TCP or UDP
○ Chose TCP

● Port choices: 80 or 443
○ But both are taken!

● Chrome test shows usability of port 80 for non HTTP
protocols is <75%.
○ Using port 80 makes SPDY like Pipelining.

● Port 443 is the only untampered port.

● Other ports: blocked by firewalls

Pause - That was the Big Picture
"Better is the enemy of good"

● The aforementioned items are the non-
controversial parts of SPDY.

● HTTP/2.0 should take those concepts.

● Minutiae doesn't matter:
○ exact framing syntax
○ exact compression algorithm

● Stay Focused on the Big Picture!

Why Nots?

Why not SCTP?

Multiplexing over a single TCP stream does
have one element of head-of-line blocking.

But SCTP has problems:
● Not available on most platforms

● Requires administrative privs to install (so it
can't be bundled easily with browser installs)

● Incompatible with NAT on today's internet.

Why not Pipelining?

Pipelining was introduced a decade ago.

● Wasn't deployable due to intermediaries that didn't
handle it properly.

● It has complex head-of-line blocking problems (hanging
GETs)

● Firefox team list of heuristics is huge. SPDY was easier
to build than pipelining.

● Counterpoint: mobile uses pipelining. Does it work?

Why 1 Connection?

● More efficient for network, memory use, and

server scalability; better compression.

● Don't have to wait for a handshake to
complete before sending a request.

● Doesn't encourage Buffer bloat. (Jim
Gettys)

● Lets the transport do what it does best.

● Would like to see more research here.

SPDY for Mobile

Mobile is Different

● New client-side problems

○ Battery life constraints
○ Small CPUs (changing fast!)

● New Network Properties
○ Latency from 150 - 300ms per Round Trip
○ Bandwidth 1-4Mbps

● New use cases
○ Mobile Web Browsers are 1st generation

■ So web browsing sucks
○ Everyone uses Apps w/ REST APIs anyway

SPDY and Mobile

● Fewer connections/bytes/packets reduces

transmit requirements of radio

● Mobile connection management is different
due to NAT and in-and-out networks.
○ Can't use TCP Keepalives
○ PING frame detects closed conns quickly

● Header compression minimizes upstream
sends

● 1 conn per domain minimizes tcp-level
control traffic

The Tough Stuff

● Optional features are disabled features.
e.g. pipelining.

● Optional features are buggy.
e.g. absolute URIs fail on many HTTP/1.1 servers.

● Feature detection often takes a round-trip.
e.g. does it support a compressed request?

● Proxies will tamper with option negotiation.
e.g. Accept-EnXcoding

Don't make things "optional"

Security

I often hear that security is
difficult/expensive/costly or unwanted.

I've NEVER heard this complaint from a user.

I've ONLY heard this complaint from proxy and
server implementors.

Could it be that users just expect it to be
secure?

What Security Can HTTP/2.0
Provide?

● Security is accomplished across the stack, not at a
single layer. But HTTP does play a role.

● Requiring SSL with HTTP/2.0 will:
○ Protect the user from eavesdroppers (firesheep!)
○ Protect from content tampering
○ Protect the protocol for future extensions
○ Authenticate servers

Insecure Protocols Hurt Users

Without integrity & privacy, you enable anyone
to:

○ record data about you
○ inject advertisements into your content
○ prevent access to certain sites
○ alter site content
○ limit your bandwidth (for any reason)

Is this what the user wants?

Insecure Protocols Enable
Transparent Proxies

● Transparent proxies are proxies that you
didn't opt-in to
○ As a site operator, they can alter your content
○ As a user, they can alter your web experience

● Transparent proxies are to blame for many
of our protocol woes:
○ Inability to fix HTTP/1.1 pipelining
○ Turning off compression behind the user's back

● They are easy to deploy, however...

SSL is not Expensive

● Twitter and Google rolled out with zero
additional hardware.

● Bulk encryption (RC4) is basically free

● Handshakes are a little expensive, but <1%
of CPU costs

● Certificates are free.

● SPDY + SSL is faster than HTTP.

Is an insecure protocol legal
anymore?

● Privacy laws in the US & EU make those
that leak private information liable for the
losses

● Should web site administrators need to know
how HTTP works in order to obey basic
laws?

Recognizing Different
Requirements

We need multiple protocols, not options

We have distinct use cases

● End User HTTP
○ targets consumers and Internet User needs

● BackOffice HTTP
○ for those using HTTP in behind their own firewalls

● Caching HTTP (also corp firewall HTTP)
○ For corporate environments or organizations sharing

a common cache
○ May not be a separate protocol, but lets make it

work explicitly.

End User HTTP

● Optimized for the Internet Consumer.

● Features:

○ Always secure (safe to use in the Cafe)

○ Always compressed

○ Always fast

BackOffice HTTP

● Used for backoffice server infrastructure,
already behind your own firewalls.

● Features:

○ Not implemented by browsers

○ Makes SSL optional

○ Makes Compression optional

Caching HTTP

● Used by corporations with filtering firewalls
or those that want to have an external cache

● Features:

○ User opts-in. Never transparent.

○ SSL to the proxy; proxy brokers the request to origin

○ Respects HSTS

○ Reduces need for SSL MITM

Thank you!
Looking forward to a fantastic HTTP/2.0!

