
HTTP/2.0 : Intermediary Requirements

Willy Tarreau - Exceliance (HAProxy project)

Amos Jeffries - Treehouse Networks Ltd. (Squid project)

Hit the space bar for next slide

1

Issues intermediaries are currently facing

Intermediaries have a complex role :

must support unusual but compliant message formating (eg: variable case in header names,
single LF, line folding, variable number of spaces between colon and field value)

fix what ought to be fixed before forwarding (eg: multiple content-length and folding), adapt a
few headers (eg: Connection)

must not affect end-to-end behaviour even if applications rely on improper assumptions
(effects of rechunking or multiplexing)

need to maintain per-connection context as small as possible in order to support very large
amounts of concurrent connections

need to maintain per-request processing time as short as possible in order to support very high
request rates

front line during DDoS, need to take decisions very quickly

2

A few numbers

A few numbers taken from haproxy experience reports give a better idea of the world of
intermediaries :

750 CPU cycles : the time it takes to parse an average HTTP request

6 microseconds : total CPU time (usr+sys) spent on forwarding a complete end-to-end
request+response from accept() to close() (~18k CPU cycles @3 GHz)

30 sec : the most common request / response timeout setting

17 kB : the most common per-request context, out of which 16 kB are used to store headers to
be parsed

1 million : the largest reported number of peak concurrent connections on a single server (long
polling)

10 million/sec : the largest reported peak connection rate during a 24 Gbps DDoS, 60
machines involved to stand the load.

3

What intermediaries need

Intermediaries would benefit from :

Reduced connection/requests ratio (more requests per connection)
→ drop of connection rate
→ drop of memory footprint (by limiting concurrent conns)

Reduced per-request processing cost and factorize it per-connection
→ higher average request rate
→ connection setup cost is already "high" anyway

Reduced network packet rate by use of pipelining/multiplexing
→ reduces infrastructure costs
→ significantly reduces RTT impacts on the client side

4

Step 1 : reduce message parsing costs

Several changes must be applied to reduce message parsing costs :

no more parsing to skip over useless information - all message elements must have a known
length (known by design or advertised).

no more parsing/lookup of usual methods and header names, use enums for most common
ones.

no more painful parsing of chunk size + CRLF + extensions, just binary-encode the length

5

Step 2 : factor out redundant processing

Most consecutive requests from a user agent share everything but the URI. Factor them out by
introducing two new header sections :

per connection: User-Agent, Host, etc... are commonly unchanged over a same connection.
→ transport-section

per group of messages: Accept, Referer, Cookies, are commonly unchanged for a number of
consecutive requests.
→ common-section

the rest is the message section

→ significant reduction of upstream bandwidth

6

Step 3 : encourage out-of-order processing
and multiplexed connections

Pipelining and out-of-order processing reduce the number of round trips required to transmit all
the requests and responses.

significant reduction of round trips.

more full network packets, less total packets.

16-bit request ID allows up to 64k outstanding requests per connection.

even with HTTP Upgrade+101 there are solutions to save round trips

7

Example : before reduction

Example on IETF83 page : 18 requests similar to this one totalize 7582 bytes upstream to load
the whole page :

GET /css/ietf.js HTTP/1.1
Host: www.ietf.org
User-Agent: Mozilla/5.0 (X11; Linux i686 on x86_64; rv:6.0.2) Gecko/20100101 Firefox/6.0.2
Accept: */*
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Connection: keep-alive
Referer: http://www.ietf.org/meeting/83/
Cookie: styleSheet=1

8

Example : after reduction

Once reduced using the two methods above, the 18 requests become 707 bytes (91%
compression ratio) :

172 + 1 bytes of transport section :

1 byte for User-Agent, 1 byte for length, 78 bytes for value

Same for Host, Connection, Accept-Language, Accept-Encoding and Accept-Charset (total 92 bytes)

47 + 1 bytes of common section (2nd and further requests) :

1 byte for Cookie, 1 byte for length, 12 bytes for value

1 byte for Referer, 1 byte for length, 31 bytes for value

468 + 18 bytes of message sections :

18 * 1 byte for GET + HTTP version

18 * 1 byte for URI length

432 bytes for all 18 URIs

9

Benefits

Cheap to emit for clients (UA and intermediaries), only factor out what is certain

Mobile-networks friendly by large reduction of volume (18 requests fit in half an MSS)

Cheap to parse for intermediaries, as already known headers don't have to be parsed again

Cheap to store for intermediaries, as it helps reducing the per-request context

Lower latency out-of-order delivery using a simple request ID

Low forwarding cost with easy memcpy()/writev() from transport/common section to the message

10

Next steps

Finer impact estimates on intermediaries / end points

More work needed on the handshake

Finish the draft with all the details

Get more intermediaries and client authors involved

Have a working implementation for tests and measurements

11

