HTTP/2.0 : Intermediary Requirements

Willy Tarreau - Exceliance (HAProxy project)
Amos Jeffries - Treehouse Networks Ltd. (Squid project)

Hit the space bar for next slide



Issues intermediaries are currently facing

Intermediaries have a complex role :

e must support unusual but compliant message formating (eg: variable case in header names,
single LF, line folding, variable number of spaces between colon and field value)

e fix what ought to be fixed before forwarding (eg: multiple content-length and folding), adapt a
few headers (eg: Connection)

e must not affect end-to-end behaviour even if applications rely on improper assumptions
(effects of rechunking or multiplexing)

e need to maintain per-connection context as small as possible in order to support very large
amounts of concurrent connections

¢ need to maintain per-request processing time as short as possible in order to support very high
request rates

e front line during DDoS, need to take decisions very quickly



A few numbers

A few numbers taken from haproxy experience reports give a better idea of the world of
intermediaries :

e 750 CPU cycles : the time it takes to parse an average HTTP request

e 6 microseconds : total CPU time (usr+sys) spent on forwarding a complete end-to-end
request+response from accept() to close() (~18k CPU cycles @3 GHz)

¢ 30 sec : the most common request / response timeout setting

e 17 kB : the most common per-request context, out of which 16 kB are used to store headers to
be parsed

¢ 1 million : the largest reported number of peak concurrent connections on a single server (long
polling)

¢ 10 million/sec : the largest reported peak connection rate during a 24 Gbps DDoS, 60
machines involved to stand the load.



What intermediaries need

Intermediaries would benefit from :

e Reduced connection/requests ratio (more requests per connection)
- drop of connection rate
- drop of memory footprint (by limiting concurrent conns)

e Reduced per-request processing cost and factorize it per-connection
- higher average request rate
— connection setup cost is already "high" anyway

e Reduced network packet rate by use of pipelining/multiplexing
- reduces infrastructure costs
- significantly reduces RTT impacts on the client side



Step 1 : reduce message parsing costs

Several changes must be applied to reduce message parsing costs :

e N0 more parsing to skip over useless information - all message elements must have a known
length (known by design or advertised).

e no more parsing/lookup of usual methods and header names, use enums for most common
ones.

¢ no more painful parsing of chunk size + CRLF + extensions, just binary-encode the length



Step 2 : factor out redundant processing

Most consecutive requests from a user agent share everything but the URI. Factor them out by
introducing two new header sections :

e per connection: User-Agent, Host, etc... are commonly unchanged over a same connection.
- transport-section

e per group of messages: Accept, Referer, Cookies, are commonly unchanged for a number of
consecutive requests.
- common-section

e the rest is the message section

- significant reduction of upstream bandwidth



Step 3 : encourage out-of-order processing
and multiplexed connections

Pipelining and out-of-order processing reduce the number of round trips required to transmit all
the requests and responses.

e significant reduction of round trips.
e more full network packets, less total packets.
¢ 16-bit request ID allows up to 64k outstanding requests per connection.

e even with HTTP Upgrade+101 there are solutions to save round trips



Example : before reduction

Example on IETF83 page : 18 requests similar to this one totalize 7582 bytes upstream to load
the whole page :

GET /css/ietf.js HTTP/1.1

Host: www.ietf.org

User-Agent: Mozilla/5.0 (X11; Linux i686 on x86 64; rv:6.0.2) Gecko/20100101 Firefox/6.0.2
Accept: */*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;q=0.7

Connection: keep-alive

Referer: http://www.ietf.org/meeting/83/

Cookie: styleSheet=1



Example : after reduction

Once reduced using the two methods above, the 18 requests become 707 bytes (91%
compression ratio) :

e 172 + 1 bytes of transport section :
e 1 byte for user-Agent, 1 byte for length, 78 bytes for value

e Same for Host, Connection, Accept-Language, Accept-Encoding and Accept-Charset (total 92 bytes)

e 47 + 1 bytes of common section (2nd and further requests) :
e 1 byte for cookie, 1 byte for length, 12 bytes for value

e 1 byte for referer, 1 byte for length, 31 bytes for value

¢ 468 + 18 bytes of message sections :
e 18 * 1 byte for GET + HTTP version
e 18 * 1 byte for URI length
e 432 bytes for all 18 URIs



10

Benefits

e Cheap to emit for clients (UA and intermediaries), only factor out what is certain

e Mobile-networks friendly by large reduction of volume (18 requests fit in half an MSS)

e Cheap to parse for intermediaries, as already known headers don't have to be parsed again
e Cheap to store for intermediaries, as it helps reducing the per-request context

e Lower latency out-of-order delivery using a simple request ID

e Low forwarding cost with easy memcpy()/writev() from transport/common section to the message



11

Next steps

e Finer impact estimates on intermediaries / end points
e More work needed on the handshake

¢ Finish the draft with all the details

e Get more intermediaries and client authors involved

e Have a working implementation for tests and measurements



