The Waka Pro’rocol

Roy T. Fielding, Ph.D

Principal Scientist, Adobe Systems
Director, The Apache Software Foundation




Waka

A new protocol designed fo match the efficiency of
well-designed Web Applications

Why “‘waka”?

— Maori word (pronounced “"wah-kah”) for the outrigger
canoes used to travel safely on the Pacific Ocean,
across hundreds of islands, to Aotearoa (New Zealand)

— Also, one of the few four-letter words suitable for a
protocol name

Peployable within an HTTP connection

— via the HTTP/1.1 Upgrade header field
— defined mapping to HTTP/1.1 for proxies

© 2012 Roy T. Fielding The Waka Protocol



HITP

Therole of HTTP in Web Architecture

— Extend uniform interface across the net
— Minimize user-perceived latency

— Enable layered processing

— Enable caching

— Enable extension and evolution

Already survived two decades of evolution

— 1991-93: HTTP/0.9 [Berners-Lee]
— 1993-97: HTTP/1.0 [RFC 1945]
— 1996-now: HTTP/1.1 [RFC 2068/2616/HTTPbis]

© 2012 Roy T. Fielding The Waka Protocol



HTTP Syntax

GET /Test/hello.html HTTP/1.1\r\n
Host: kiwi.ics.uci.edu:8080\r\n
Accept: text/html, text/#*, */*\r\n
User-Agent: GET/7 1ibwww-perl/5.40\r\n
\r\n

HTTP/1.1 200 OK\r\n

Date: Thu, 09 Mar 2000 15:40:09 GMT\r\n
Server: Apache/1.3.12\r\n
Content-Type: text/html\r\n
Content-Language: en\r\n
Transfer-Encoding: chunked\r\n
Etag: “a797cd-465af”’\r\n
Cache-control: max-age=3600\r\n
Vary: Accept-Language\r\n

\r\n

4090\ r\n

<HTML><HEAD>

© 2012 Roy T. Fielding The Waka Protocol



Issues: Wasted Syntax

GET /Test/hello.html HTTP/1.1\r\n
Host: kiwi.ics.uci.edu:8080\r\n
Accept: text/html, text/#*, */*\r\n
User-Agent: GET/7 1ibwww-perl/5.40\r\n
\r\n

HTTP/1.1 200 OK\r\n

Date: Thu, 09 Mar 2000 15:40:09 GMT\r\n
Server: Apache/1.3.12\r\n
Content-Type: text/html\r\n
Content-Language: en\r\n
Transfer-Encoding: chunked\r\n
Etag: “a797cd-465af’\r\n
Cache-control: max-age=3600\r\n
Vary: Accept-Language\r\n

\r\n

4090\ r\n

<HTML><HEAD>

© 2012 Roy T. Fielding The Waka Protocol



Issues: Not Self-descriptive

GET /Test/hello.html \r\n

Host: kiwi.ics.uci.edu:8080\r\n Control Data
Accept: text/html, text/#*, */*\r\n

User-Agent: GET/7 1ibwww-perl/5.40\r\n

\'\" Messages associated by order sent/received
200 OK\r\n

\r\n
\r\n
Content-Type: text/html\r\n
Content-Language: en\r\n

Transfer-Encoding: chunked\r\n ‘
Etag: “a797cd-465af”\r\n Representation

\r\n Metadata

Vary: Accept-Language\r\n
\r\n

4090\ r\n

<HTML><HEAD>

© 2012 Roy T. Fielding The Waka Protocol



Issues: Head-of-Line Blocking

Message Ordering

— Pipelining depends on pairing requests to responses
A slow response delays all later requests
Servers can't send unsolicited event notifications

Envelope Ordering

— Control data must be sent first
server must indicate success before it is actuvally successful

— Metadata must be sent before Data
low-priority metadata is excluded for performance reasons
data cannot be sent until all filters supply metadata
dynawically generated metadata is lost

— Data must be entirely delivered
no signal for abnormal termination
limited support for small-memory devices (Range requests)

— Control data cannot be updated to reflect events
what if the sender encounters a time-out condition?
what if an intermediary is caught in the wmiddle of a bad stream?

© 2012 Roy T. Fielding The Waka Protocol



Waka

A replacement for HTTP (under development)

— Token-based, length-delimited syntax*
considering changing this to a derivative of msgpack

— Self-descriptive messages

Interleaved message (metaldata packets:

— Up to 64 channels per connection
— Up to 63 payload streams per message

Complete transport independence
— TCP, UDP, SCTP, TLS, multicast, ...

© 2012 Roy T. Fielding The Waka Protocol



New Request Semantics

Multiple request targets (GET many subrequests)

Request control data

— request/transaction identifier
— relative priority (high, low, HiLo)
— explicit indication of context (main, embed, js, test)

Methods

— RENDER for display/print/speak this representation
— MONITOR for notify me when resource state changes

Authoring methods (DAV simplified)

— elimination of non-resource identifiers
— reintroduction of PATCH

© 2012 Roy T. Fielding The Waka Protocol



New Response Semantics

Self-descriptive binding to the request

— Echo of request id, method, target URI

— Cache key explicitly described
Caches no longer need to save request fields
Caches dont have to guess about Vary info

— Enables asynchronous transport

Response indicates authoritative or not

— Semantics formerly in status code

Unsolicited Responses

— Cache invalidation messages
— Multicast event notices

© 2012 Roy T. Fielding The Waka Protocol

10



Waka Syntax

Uniform syntax

— Regardless of message type, direction
— Padding allowed for 32/64bit alignment

Self-deseriptive

— Explicit typing for message structure, fields

— Indication of mandate and scope of fields

— Association of metadata (control, resource, rep.)
— Premature termination of request or response

Efficient and Extensible

— Tokens for all standard elements

— A URI reference can be used in place of any token
— Macros (client-defined syntax short-hand)*

— Interleaved data and metadata delivery

© 2012 Roy T. Fielding The Waka Protocol

11



Future Plans

Finish HTTPbis
Finish drafting Tracking Protection
Write a specification for Waka

Decide whether to subwit it here.

© 2012 Roy T. Fielding



