
Reverse Tunnel over HTTP
draft-kazuho-httpbis-reverse-tunnel

Kazuho Oku

the concept

ordinary HTTP

Connect

HTTP requests

HTTP client HTTP server

ordinary HTTP (server behind firewall)

Connect

HTTP client HTTP server

incoming TCP SYN
blocked by firewall❌

reverse HTTP

Connect

HTTP requests

HTTP client HTTP server

outgoing TCP SYN not
blocked by firewall

but exactly how?

“Reverse HTTP” proposal @ IETF 118

TLS handshake

HTTP requests

HTTP client HTTP server

● TLS handshake carries:
○ special ALPN
○ client cert authenticates the server
○ the cert and ORIGIN frame identify

HTTP resources the HTTP server is
responsible for

● once handshake is done, unmodified HTTP
is used (with the TCP server being the
HTTP client)

https://github.com/httpwg/wg-materials/blob/gh-pages/ietf118/reverse-http.pdf

“Reverse HTTP” proposal @ IETF 118

TLS handshake

HTTP requests

HTTP client HTTP server

Comments at IETF 118:

● distaste to exchange tunnel parameters
using TLS handshake (inflexibility)
○ mandates use of certs for

authentication
○ HTTP resources for which the server

is responsible are identified using
certs and ORIGIN frames

● desire to use the tunnel for relaying TCP

https://github.com/httpwg/wg-materials/blob/gh-pages/ietf118/reverse-http.pdf

the new “Reverse Tunnel” proposal

Use HTTP to establish reverse tunnel
TLS handshake

HTTP client HTTP server

extended CONNECT

● extended CONNECT is used to establish
the tunnel

● once the tunnel is established, the
exchange happen on the tunnel with the
roles reversed

HTTP requests

Use HTTP to establish reverse tunnel
TLS handshake

HTTP client HTTP server

extended CONNECT

● TLS handshake carries ordinary ALPN:
http/1.1, h2, h3

● “HTTP servers” can be authenticated
using other ways than TLS client auth
○ example: basic auth

HTTP requests

Use HTTP to establish reverse tunnel
TLS handshake

HTTP client HTTP server

extended CONNECT

HTTP server:
 GET /reverse-tunnel/of/x HTTP/1.1
 Upgrade: reverse
 Authorization: Basic …

HTTP client:
 HTTP/1.1 101 Switching Protocols
 Upgrade: reverse

HTTP requests

Use HTTP to establish reverse tunnel
TLS handshake

HTTP client HTTP server

extended CONNECT

Once the reverse tunnel is established, HTTP
requests start to flow from client to server

HTTP requests

why use extended CONNECT?

● flexibility:
○ use URI (https://example.com/reverse-tunnel/of/X) to identify the

resources for which the servers are responsible
■ e.g., this reverse server is responsible for path “/search?”

○ use any authentication scheme compatible with HTTP
● easier integration:

○ CDNs already provide HTTP-based APIs to the content providers
■ extended CONNECT is also HTTP

● build on top of HTTP semantics
○ rather than building one’s own scheme using TLS

https://example.com/reverse-tunnel/of/X

Which version of HTTP is it being tunnelled?
TLS handshake

HTTP client HTTP server

extended CONNECT

HTTP requests

Which version of HTTP is it being tunnelled?
TLS handshake

HTTP client HTTP server

extended CONNECT

HTTP requests

Option a) use TLS on top of tunnel

● cons: double encryption

Option b) use HTTP headers to negotiate

● extended CONNECT request includes:
ALPN: h2, http/1.1

● extended CONNECT response includes:
Selected-ALPN: h2

easy to implement, performance is guaranteed

in the HTTP proxy, we want to:

● accept reverse CONNECT requests using HTTP/1.1, and
● as we send 101 Switching Protocols, move the connection state to the

proxy’s backend connection pool

why?

● backend connection pool can contain connections created in the normal
direction and in the reverse direction, there’s no need to disambiguate

● we reuse the already optimized path of HTTP proxying, once the reverse
tunnel is established

What about HTTP/3?
TLS handshake

HTTP client HTTP server

extended CONNECT

HTTP requests

We can add support.

Specifically, we can allow use of datagrams
(or capsules) on the tunnel to exchange QUIC
(HTTP/3) packets.

use as a TCP relay

Use as a TCP relay
TLS handshake

HTTP client HTTP server

extended CONNECT

GET /.well-known/listen-tcp/0.0.0.0/25/ …
Upgrade: reverse

listen address

100-continue

101 Switching

ne
w

TC
P

co
nn

ec
ti

on

Use as a TCP relay
TLS handshake

HTTP client HTTP server

extended CONNECT

GET /.well-known/listen-tcp/0.0.0.0/25/ …
Upgrade: reverse

HTTP/1.1 100 Continue

listen address

100-continue

101 Switching

waiting for incoming
connection

ne
w

TC
P

co
nn

ec
ti

on

Use as a TCP relay
TLS handshake

HTTP client HTTP server

extended CONNECT

GET /.well-known/listen-tcp/0.0.0.0/25/ …
Upgrade: reverse

HTTP/1.1 100 Continue

HTTP/1.1 101 Switching Protocols
Forwarded: for=192.0.2.43

100-continue

101 Switching

ne
w

TC
P

co
nn

ec
ti

on

relay connection established

Use as a TCP relay

● current semantics is accept(2), i.e.:
○ each extended CONNECT request creates a tunnel for one

connection being relayed
● alternative is bind(2):

○ creation of tunnel indicates the intent to listen
○ the tunnel MUST convey H2 or H3 for multiplexing
○ for each accepted connection, HTTP client issues a CONNECT

request on the tunnel and relays the TCP bytes

Questions

Questions

● Does the design look correct?
● Do we want to (need to) support HTTP3 (on QUICv1)?
● Do we need TCP relay mode?

