
Discovering WebSocket
over HTTP/2 and HTTP/3

IETF 116 – Yokohama – 2023-03

 Lucas Pardue – lucaspardue.24.7@gmail.com
Momoka Yamamoto - momoka.my6@gmail.com

Dragana Damjanovic - dragana.damjano@gmail.com

Recap

● Bootstrapping WebSockets with
○ HTTP/2 - RFC 8441
○ HTTP/3 - RFC 9220

● WebSocket per request stream, converted via extended CONNECT

2

:method = CONNECT
:protocol = websocket
:scheme = https
:path = /chat
:authority = server.example.com
sec-websocket-protocol = chat, superchat
sec-websocket-extensions = permessage-deflate
sec-websocket-version = 13
origin = http://www.example.com

We extended CONNECT semantics and flowers bloomed

SETTINGS_ENABLE_CONNECT_PROTOCOL=1
Once a client knows, it can can send extended CONNECT
Sending extended CONNECT at any other time == malformed request

:protocol pseudo-header
Value is an HTTP Upgrade Token
Registered: websocket, connect-udp
WIP: webtransport, connect-ip, … connect-tcp

3

https://www.iana.org/assignments/http-upgrade-tokens/http-upgrade-tokens.xhtml

The setting makes client implementation difficult

A client probably discovers a WebSocket resource with the scheme wss://

SETTINGS_ENABLE_CONNECT_PROTOCOL is a strong signal that extended
CONNECT is supported but a weak signal that WebSockets are supported

A client has to make several gambles when determining what connection to pick to
open a WebSocket.

● New H1.1 conn + Upgrade: websocket probably will work
● New H2 or H3 conn => wait for SETTING

○ Send a request that might fail because :protocol is not supported
● Existing H2 or H3 => will already have SETTING

○ Send extended CONNECT that might fail because :protocol is not supported

4

So what’re the perceived problems?

From past WG mailing list discussion, these are views are not shared by all:

● Availability of a resource at an authority is not tightly linked to the HTTP version
features available when connecting to the authority.

● Latency risks from guessing wrong adds friction to uptake of “X over HTTP/Y”

● Dispatching requests based on state can be opaque and a bit non-deterministic

● More extended CONNECT on the way e.g., WebTransport
○ Supporting different protocols requires SETTINGS_ENABLE_CONNECT_PROTOCOL
○ But setting doesn’t indicate list of supported protocols
○ Server operator may have reasons to support a protocol on a subset of HTTP versions

5

Fix, mitigate, avoid, or ignore?

1. Better advertisement could provide stronger hints, reducing risks:
- 2 proposals, see next slides

2. Better semantic HTTP feature discovery could provide stronger hints:
- E.g. OPTIONS for HTTP-version-specific features?

3. Better response status or error codes could provide better failover hints
- currently defined but unsuitable(?):

421, 426, HTTP_1_1_REQUIRED, H3_VERSION_FALLBACK
4. Require deployments to support “all the things” to avoid client (user) pain?
5. Live with status quo, do nothing, etc.

6

Current Problem with just extended CONNECT knowledge
When there is an existing H2 or H3 connection and client discovers a WebSocket
resource with the scheme wss://

7

client sends a WebSockets
request by extended CONNECT

using the existing connection

client creates new HTTP/1.1
connection and does Upgrade

server supports
WebSockets over

HTTP/2

WebSockets over HTTP/2
connection successfully created

:) 😊😊😊

WebSockets creation connected
(Requires unnecessary RTTs to create

new HTTP/1.1 connection)
:(😨😨😨

server does not
support

WebSockets over
HTTP/2

WebSockets over HTTP/2
connection fails

:(😰😰😰
WebSockets creation connected

:) 😊😊😊

The client does not know if the server supports WebSockets over the current connection, so it cannot make the right choice.

Proposal 1: SETTINGS_ENABLE_WEBSOCKETS

Create a SETTINGS_ENABLE_WEBSOCKET parameter

draft-momoka-httpbis-settings-enable-websockets

server supports WebSockets over H2 or H3:
SETTINGS_ENABLE_WEBSOCKETS = 1

server does not support WebSockets over H2 or H3:
SETTINGS_ENABLE_WEBSOCKETS = 0

WebTransport has a SETTINGS_ENABLE_WEBTRANSPORT
(or SETTINGS_WEBTRANSPORT_MAX_SESSIONS>0) parameter.

8

https://datatracker.ietf.org/doc/draft-momoka-httpbis-settings-enable-websockets/

Proposal 1: SETTINGS_ENABLE_WEBSOCKETS

The Client behavior:

9

There is an existing
H2 or H3 connection

settings parameter is not sent
from server

(current behavior)
Behavior may vary by implementation.

SETTINGS_ENABLE_WEBSO
CKETS = 0 New HTTP/1.1 connection + Upgrade

SETTINGS_ENABLE_WEBSO
CKETS = 1 Use current connection for WebSockets over H2 or H3

Proposal 2: Advertising WebSocket support in HTTPS RR

Discover the WebSockets support before creating a connection

Extending HTTPS RR:
● Already use for discovering alpn, etc.

draft-damjanovic-websockets-https-rr-01

10

https://datatracker.ietf.org/doc/html/draft-damjanovic-websockets-https-rr-01

Proposal 2: Advertising WebSocket support in HTTPS RR

example.net IN HTTPS 1 . alpn=h2,h3 wss=h2,h3

● New "wss" SvcParamKey
● the SvcParamValue: a list of alpn-ids that support the

WebSocket Protocol
● The alpn-ids must be present in the "alpn" key as well

11

Proposal 2: Advertising WebSocket support in HTTPS RR

● The Client behavior:
○ the "wss" key is present - strong indication of support, the

client can attempt WebSockets over HTTP/2 or HTTP/3
○ the "wss" key is not present - the client should use

WebSockets over HTTP/1.1
○ the "wss" key - no indication of the support for WebSockets

over HTTP/1.1

12

Conclusion

This topic has been rumbling along for ~2 years

Let's determine if there is consensus to address it with fixes

…and is so, let’s quickly align on what fixes

… two complimentary proposals on the table

- draft-momoka-httpbis-settings-enable-websockets
- draft-damjanovic-websockets-https-rr-01

13

https://datatracker.ietf.org/doc/draft-momoka-httpbis-settings-enable-websockets/
https://datatracker.ietf.org/doc/html/draft-damjanovic-websockets-https-rr-01

