Discovering WebSocket
over HTTP/2 and HTTP/3

IETF 116 — Yokohama — 2023-03

Lucas Pardue — lucaspardue.24.7@gmail.com
Momoka Yamamoto - momoka.my6@gmail.com
Dragana Damjanovic - dragana.damjano@gmail.com

Recap

e Bootstrapping WebSockets with

o HTTP/2 - RFC 8441
o HTTP/3 - RFC 9220

e \WebSocket per request stream, converted via extended CONNECT

:method = CONNECT

:protocol = websocket

:scheme = https

:path = /chat

:authority = server.example.com
sec-websocket-protocol = chat, superchat
sec-websocket-extensions = permessage-deflate
sec-websocket-version = 13

origin = http://www.example.com

We extended CONNECT semantics and flowers bloomed

SETTINGS ENABLE_CONNECT_PROTOCOL=1
Once a client knows, it can can send extended CONNECT
Sending extended CONNECT at any other time == malformed request

:protocol pseudo-header
Value is an HTTP Upgrade Token
Registered: websocket, connect-udp
WIP: webtransport, connect-ip, ... connect-tcp

https://www.iana.org/assignments/http-upgrade-tokens/http-upgrade-tokens.xhtml

The setting makes client implementation difficult

A client probably discovers a WebSocket resource with the scheme wss://

SETTINGS _ENABLE _CONNECT _PROTOCOL is a strong signal that extended
CONNECT is supported but a weak signal that WebSockets are supported

A client has to make several gambles when determining what connection to pick to
open a WebSocket.

e New H1.1 conn + Upgrade: websocket probably will work
e New H2 or H3 conn => wait for SETTING

o Send a request that might fail because :protocol is not supported

e Existing H2 or H3 => will already have SETTING
o Send extended CONNECT that might fail because :protocol is not supported

So what're the perceived problems?

From past WG mailing list discussion, these are views are not shared by all:

Availability of a resource at an authority is not tightly linked to the HTTP version
features available when connecting to the authority.
Latency risks from guessing wrong adds friction to uptake of “X over HTTP/Y”

Dispatching requests based on state can be opaque and a bit non-deterministic

More extended CONNECT on the way e.g., WebTransport

o Supporting different protocols requires SETTINGS ENABLE_CONNECT _PROTOCOL
o But setting doesn’t indicate list of supported protocols
o Server operator may have reasons to support a protocol on a subset of HTTP versions

Fix, mitigate, avoid, or ignore?

1.

Better advertisement could provide stronger hints, reducing risks:

- 2 proposals, see next slides
Better semantic HTTP feature discovery could provide stronger hints:

- E.g. OPTIONS for HTTP-version-specific features?
Better response status or error codes could provide better failover hints

- currently defined but unsuitable(?):

421,426, HTTP_1 1 REQUIRED, H3_VERSION_FALLBACK

Require deployments to support “all the things” to avoid client (user) pain?
Live with status quo, do nothing, etc.

Current Problem with just extended CONNECT knowledge

When there is an existing H2 or H3 connection and client discovers a WebSocket
resource with the scheme wss://

client sends a WebSockets
request by extended CONNECT
using the existing connection

client creates new HTTP/1.1
connection and does Upgrade

server supports WebSockets over HTTP/2 WebSockets creation connected
. (Requires unnecessary RTTs to create
WebSockets over | connection successfully created :
HTTP/2 1 OO new HTTP/1.1 connection)

(@OE

server does not

support itloee G over I._ITTP/Z WebSockets creation connected
connection fails NP
WebSockets over (OO)OO E
HTTP/2 noeeE

7
The client does not know if the server supports WebSockets over the current connection, so it cannot make the right choice.

Proposal 1: SETTINGS_ENABLE_WEBSOCKETS

Create a SETTINGS _ENABLE _WEBSOCKET parameter

draft-momoka-httpbis-settings-enable-websockets

server supports WebSockets over H2 or H3:
SETTINGS ENABLE WEBSOCKETS =1

server does not support WebSockets over H2 or H3:
SETTINGS ENABLE WEBSOCKETS =0

WebTransport has a SETTINGS ENABLE WEBTRANSPORT
(or SETTINGS_WEBTRANSPORT_MAX SESSIONS>0) parameter.

https://datatracker.ietf.org/doc/draft-momoka-httpbis-settings-enable-websockets/

Proposal 1: SETTINGS_ENABLE_WEBSOCKETS

The Client behavior:

There is an existing
H2 or H3 connection

settings parameter is not sent
from server
(current behavior)

SETTINGS_ENABLE_WEBSO
CKETS =0

SETTINGS_ENABLE_WEBSO
CKETS =1

Behavior may vary by implementation.

New HTTP/1.1 connection + Upgrade

Use current connection for WebSockets over H2 or H3

Proposal 2: Advertising WebSocket support in HTTPS RR

Discover the WebSockets support before creating a connection

Extending HTTPS RR:
e Already use for discovering alpn, etc.

draft-damjanovic-websockets-https-rr-01

10

https://datatracker.ietf.org/doc/html/draft-damjanovic-websockets-https-rr-01

Proposal 2: Advertising WebSocket support in HTTPS RR

example.net IN HTTPS 1 . alpn=h2,h3 wss=h2,h3

e New "wss" SvcParamKey
e the SvcParamValue: a list of alpn-ids that support the

WebSocket Protocol
e The alpn-ids must be present in the "alpn” key as well

11

Proposal 2: Advertising WebSocket support in HTTPS RR

e The Client behavior:

O

the "wss" key is present - strong indication of support, the
client can attempt WebSockets over HTTP/2 or HTTP/3
the "wss" key is not present - the client should use
WebSockets over HTTP/1.1

the "wss" key - no indication of the support for WebSockets
over HTTP/1.1

12

Conclusion

This topic has been rumbling along for ~2 years
Let's determine if there is consensus to address it with fixes
...and is so, let’'s quickly align on what fixes
... two complimentary proposals on the table

- draft-momoka-httpbis-settings-enable-websockets

- draft-damjanovic-websockets-https-rr-01

13

https://datatracker.ietf.org/doc/draft-momoka-httpbis-settings-enable-websockets/
https://datatracker.ietf.org/doc/html/draft-damjanovic-websockets-https-rr-01

