
HTTP Message Signatures
IETF 114

July 28, 2022
Justin Richer and Annabelle Backman

1

● Detached signature mechanism for generic HTTP messages
○ Can sign request and response
○ Works decently across HTTP versions

● Robust against expected changes, e.g.
○ Proxy injection of header fields
○ Partial signature of stable aspects of message

● Allows multiple signatures
○ Including adding signatures over time

● Uses HTTP-native technologies
○ Structured Fields for encoding

What is it?

2

HTTP Message

Signature Base

Signature Output
Example generated at https://httpsig.org/ 3

"example-dict";key="c": 4;aa=bb

Component Name Component Value

Component Identifier

Signature Base Line

Example-Dict: a=(1 2), b=3, c=4;aa=bb, d=(5 6);valid

Message component (Dictionary Field)

4

● Inputs:
○ HTTP Message
○ Key material
○ Required components

● Functions:
○ Cryptographic primitives: HTTP_SIGN (M, Ks) -> S
○ Key derivation (where needed)
○ Message hashing (where needed)
○ Binary encoding (where needed)

● Outputs:
○ Message signature (byte sequence)
○ Signature parameters (ordered set with parameters)

HTTP Signature Process

5

● Inputs:
○ HTTP Message
○ Key material
○ Signature parameters (ordered set of covered components with parameters)
○ Message signature

● Functions:
○ Cryptographic primitives: HTTP_VERIFY (M, Kv, S) -> V
○ Key derivation (where needed)
○ Message hashing (where needed)
○ Binary encoding (where needed)

● Outputs:
○ Boolean verification status

HTTP Signature Verification Process

6

● More security and privacy considerations added to document
○ Relationship to Digests
○ Dealing with weird things like Set-Cookie

● Significant editorial clarifications
○ Applied HTTP editor guidelines throughout
○ Clarified terms: “component name”, “component identifier”, “component value”

● Updated and expanded examples
● Added “req” flag for request-response binding

○ Removed “@request-response” derived component
● Added “bs” flag for byte-sequence encoded values

Draft Status: From -08 to -11

7

Implementation Status

● Java library (at least two)
● Python library (behind httpsig.org and in-doc examples)
● Scala library
● JavaScript (in-browser)
● Rust library (update of Cavage-draft implementation)
● Go library (from scratch)
● We can add these to httpsig.org as they become usable

8

HTTP Signatures Roadshow! 9

GNAP

● Main key proofing method in GNAP

10

FAPI

● Referenced in OpenID Foundation’s “Financial Grade API” draft specification

11

12https://httpsig.org/

Working Group Last Call

● The editors believe this draft is ready for WGLC
● Core has been stable for a long time
● There are a growing number of implementations
● Other work is depending on this
● We can probably close out the last issues quickly

○ Some can probably be closed without action
○ Last few have proposed solutions or need WG input, could be part of WGLC

13

● Relation with Signed Exchanges (#1206)
● Support for signing specific cookies (#1197)
● Support expected authority changes (#1196)

Probably-Closable Issues

14

https://github.com/httpwg/http-extensions/issues/1206
https://github.com/httpwg/http-extensions/issues/1197
https://github.com/httpwg/http-extensions/issues/1196

● Opaque singer-chosen string to indicate “target application” of signature
● Mitigation for oracle attacks
● Similar feature in TLS 1.3
● Proposal in issue: add REQUIRED signature parameter, don’t describe

contents (to be filled in by applications)
● Editors proposal: add OPTIONAL signature parameter with descriptions of

use, no restrictions on content (PR#2222)

Open Issue #2133: Signature Context

15

https://github.com/httpwg/http-extensions/pull/2222
https://github.com/httpwg/http-extensions/issues/2133

● Someone could cache the response from one signed request and replay it to
another signed (or unsigned) request

● Someone could cache a signed response
● Editors have added some text;

What additional guidance do we need to give?

Open Issue #2134: Cache

16

https://github.com/httpwg/http-extensions/issues/2134

● Draft focuses on traditional request/response
● Components are taken from context of message (request or response with

optional request that caused it)
● Server push has a potentially different context

○ One request multiple responses
○ Maybe no requests at all except something the server made up?

● Editors have no idea what to do with this one, need experts
○ Is the description we have enough?
○ Do we need to mention server push explicitly?
○ Are there security considerations with server push?

Open Issue #2144: Server Push

17

https://github.com/httpwg/http-extensions/issues/2144

