frankenRFC723x_sem.txt   draft-ietf-httpbis-semantics-07.txt 
Internet Engineering Task Force (IETF) R. Fielding, Ed. HTTP Working Group R. Fielding, Ed.
Request for Comments: 7231 Adobe Internet-Draft Adobe
Obsoletes: 2616 J. Reschke, Ed. Obsoletes: M. Nottingham, Ed.
Updates: 2817 greenbytes 2818,7230,7231,7232,7233,7235 Fastly
Category: Standards Track June 2014 ,7538,7615 (if approved) J. Reschke, Ed.
ISSN: 2070-1721 Intended status: Standards Track greenbytes
Expires: September 8, 2020 March 7, 2020
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content HTTP Semantics
draft-ietf-httpbis-semantics-07
Abstract Abstract
The Hypertext Transfer Protocol (HTTP) is a stateless application- The Hypertext Transfer Protocol (HTTP) is a stateless application-
level protocol for distributed, collaborative, hypertext information level protocol for distributed, collaborative, hypertext information
systems. This document defines the semantics of HTTP/1.1 messages, systems. This document defines the semantics of HTTP: its
as expressed by request methods, request header fields, response architecture, terminology, the "http" and "https" Uniform Resource
status codes, and response header fields, along with the payload of Identifier (URI) schemes, core request methods, request header
messages (metadata and body content) and mechanisms for content fields, response status codes, response header fields, and content
negotiation. negotiation.
This document obsoletes RFC 2818, RFC 7231, RFC 7232, RFC 7233, RFC
7235, RFC 7538, RFC 7615, and portions of RFC 7230.
Editorial Note Editorial Note
This note is not in the original RFC. This note is to be removed before publishing as an RFC.
The purpose of this document is to produce diffs that show just the Discussion of this draft takes place on the HTTP working group
changes from text in the original RFCs that were input for http-core. mailing list (ietf-http-wg@w3.org), which is archived at
Hence, the frankenRFC documents show all of the original text (including <https://lists.w3.org/Archives/Public/ietf-http-wg/>.
stuff that has been deleted) plus some new text [in brackets] to anchor
context, rearranged to minimize the resulting diffs when compared to the
most recently published version of draft-ietf-httpbis-semantics.
After this document is updated to match any reorg changes in the latest Working Group information can be found at <https://httpwg.org/>;
version, the franken diffs are saved and published in this directory as source code and issues list for this draft can be found at
diff_semantics_frfc_to_NN.html (where NN is the I-D draft revision) <https://github.com/httpwg/http-core>.
The changes in this draft are summarized in Appendix C.8.
Status of This Memo Status of This Memo
This is an Internet Standards Track document. This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
This document is a product of the Internet Engineering Task Force Internet-Drafts are working documents of the Internet Engineering
(IETF). It represents the consensus of the IETF community. It has Task Force (IETF). Note that other groups may also distribute
received public review and has been approved for publication by the working documents as Internet-Drafts. The list of current Internet-
Internet Engineering Steering Group (IESG). Further information on Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, Internet-Drafts are draft documents valid for a maximum of six months
and how to provide feedback on it may be obtained at and may be updated, replaced, or obsoleted by other documents at any
http://www.rfc-editor.org/info/rfc7231. time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 8, 2020.
Copyright Notice Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this 10, 2008. The person(s) controlling the copyright in some of this
skipping to change at line 79 skipping to change at page 2, line 41
modifications of such material outside the IETF Standards Process. modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other it for publication as an RFC or to translate it into languages other
than English. than English.
Table of Contents Table of Contents
1. Introduction ....................................................6 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1. Conformance and Error Handling .............................6 1.1. Requirements Notation . . . . . . . . . . . . . . . . . . 9
1.2. Syntax Notation ............................................6 1.2. Syntax Notation . . . . . . . . . . . . . . . . . . . . . 10
2. Resources .......................................................7 1.2.1. Whitespace . . . . . . . . . . . . . . . . . . . . . 10
3. Representations .................................................7 2. Architecture . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1. Representation Metadata ....................................8 2.1. Client/Server Messaging . . . . . . . . . . . . . . . . . 11
3.1.1. Processing Representation Data ......................8 2.2. Intermediaries . . . . . . . . . . . . . . . . . . . . . 13
3.1.2. Encoding for Compression or Integrity ..............11 2.3. Caches . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3. Audience Language ..................................13 2.4. Uniform Resource Identifiers . . . . . . . . . . . . . . 16
3.1.4. Identification .....................................14 2.5. Resources . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Representation Data .......................................17 2.5.1. http URI Scheme . . . . . . . . . . . . . . . . . . . 17
3.3. Payload Semantics .........................................17 2.5.2. https URI Scheme . . . . . . . . . . . . . . . . . . 18
3.4. Content Negotiation .......................................18 2.5.3. http and https URI Normalization and Comparison . . . 19
3.4.1. Proactive Negotiation ..............................19 2.5.4. Deprecated userinfo . . . . . . . . . . . . . . . . . 19
3.4.2. Reactive Negotiation ...............................20 2.5.5. Fragment Identifiers on http(s) URI References . . . 20
4. Request Methods ................................................21 3. Conformance . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1. Overview ..................................................21 3.1. Implementation Diversity . . . . . . . . . . . . . . . . 20
4.2. Common Method Properties ..................................22 3.2. Role-based Requirements . . . . . . . . . . . . . . . . . 21
4.2.1. Safe Methods .......................................22 3.3. Parsing Elements . . . . . . . . . . . . . . . . . . . . 21
4.2.2. Idempotent Methods .................................23 3.4. Error Handling . . . . . . . . . . . . . . . . . . . . . 22
4.2.3. Cacheable Methods ..................................24 3.5. Protocol Versioning . . . . . . . . . . . . . . . . . . . 22
4.3. Method Definitions ........................................24 4. Header and Trailer Fields . . . . . . . . . . . . . . . . . . 24
4.3.1. GET ................................................24 4.1. Field Ordering and Combination . . . . . . . . . . . . . 25
4.3.2. HEAD ...............................................25 4.2. Field Limits . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3. POST ...............................................25 4.3. Field Names . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.4. PUT ................................................26 4.3.1. Field Extensibility . . . . . . . . . . . . . . . . . 27
4.3.5. DELETE .............................................29 4.3.2. Field Name Registry . . . . . . . . . . . . . . . . . 27
4.3.6. CONNECT ............................................30 4.4. Field Values . . . . . . . . . . . . . . . . . . . . . . 28
4.3.7. OPTIONS ............................................31 4.4.1. Common Field Value Components . . . . . . . . . . . . 30
4.3.8. TRACE ..............................................32 4.5. ABNF List Extension: #rule . . . . . . . . . . . . . . . 31
5. Request Header Fields ..........................................33 4.5.1. Sender Requirements . . . . . . . . . . . . . . . . . 31
5.1. Controls ..................................................33 4.5.2. Recipient Requirements . . . . . . . . . . . . . . . 32
5.1.1. Expect .............................................34 4.6. Trailer Fields . . . . . . . . . . . . . . . . . . . . . 32
5.1.2. Max-Forwards .......................................36 4.6.1. Purpose . . . . . . . . . . . . . . . . . . . . . . . 33
5.2. Conditionals ..............................................36 4.6.2. Limitations . . . . . . . . . . . . . . . . . . . . . 33
5.3. Content Negotiation .......................................37 4.6.3. Trailer . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1. Quality Values .....................................37 4.7. Considerations for New HTTP Fields . . . . . . . . . . . 34
5.3.2. Accept .............................................38 4.8. Fields Defined In This Document . . . . . . . . . . . . . 35
5.3.3. Accept-Charset .....................................40 5. Message Routing . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.4. Accept-Encoding ....................................41 5.1. Identifying a Target Resource . . . . . . . . . . . . . . 37
5.3.5. Accept-Language ....................................42 5.2. Determining Origin . . . . . . . . . . . . . . . . . . . 37
5.4. Authentication Credentials ................................44 5.3. Routing Inbound . . . . . . . . . . . . . . . . . . . . . 38
5.5. Request Context ...........................................44 5.4. Direct Authoritative Access . . . . . . . . . . . . . . . 38
5.5.1. From ...............................................44 5.4.1. http origins . . . . . . . . . . . . . . . . . . . . 38
5.5.2. Referer ............................................45 5.4.2. https origins . . . . . . . . . . . . . . . . . . . . 39
5.5.3. User-Agent .........................................46 5.4.3. Initiating HTTP Over TLS . . . . . . . . . . . . . . 41
6. Response Status Codes ..........................................47 5.5. Effective Request URI . . . . . . . . . . . . . . . . . . 43
6.1. Overview of Status Codes ..................................48 5.6. Host . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2. Informational 1xx .........................................50 5.7. Message Forwarding . . . . . . . . . . . . . . . . . . . 44
6.2.1. 100 Continue .......................................50 5.7.1. Via . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.2. 101 Switching Protocols ............................50 5.7.2. Transformations . . . . . . . . . . . . . . . . . . . 47
6.3. Successful 2xx ............................................51 6. Representations . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.1. 200 OK .............................................51 6.1. Representation Data . . . . . . . . . . . . . . . . . . . 48
6.3.2. 201 Created ........................................52 6.1.1. Media Type . . . . . . . . . . . . . . . . . . . . . 49
6.3.3. 202 Accepted .......................................52 6.1.2. Content Codings . . . . . . . . . . . . . . . . . . . 51
6.3.4. 203 Non-Authoritative Information ..................52 6.1.3. Language Tags . . . . . . . . . . . . . . . . . . . . 53
6.3.5. 204 No Content .....................................53 6.1.4. Range Units . . . . . . . . . . . . . . . . . . . . . 54
6.3.6. 205 Reset Content ..................................53 6.2. Representation Metadata . . . . . . . . . . . . . . . . . 58
6.4. Redirection 3xx ...........................................54 6.2.1. Content-Type . . . . . . . . . . . . . . . . . . . . 58
6.4.1. 300 Multiple Choices ...............................55 6.2.2. Content-Encoding . . . . . . . . . . . . . . . . . . 59
6.4.2. 301 Moved Permanently ..............................56 6.2.3. Content-Language . . . . . . . . . . . . . . . . . . 60
6.4.3. 302 Found ..........................................56 6.2.4. Content-Length . . . . . . . . . . . . . . . . . . . 61
6.4.4. 303 See Other ......................................57 6.2.5. Content-Location . . . . . . . . . . . . . . . . . . 62
6.4.5. 305 Use Proxy ......................................58 6.3. Payload . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4.6. 306 (Unused) .......................................58 6.3.1. Purpose . . . . . . . . . . . . . . . . . . . . . . . 64
6.4.7. 307 Temporary Redirect .............................58 6.3.2. Identification . . . . . . . . . . . . . . . . . . . 65
6.5. Client Error 4xx ..........................................58 6.3.3. Payload Body . . . . . . . . . . . . . . . . . . . . 66
6.5.1. 400 Bad Request ....................................58 6.3.4. Content-Range . . . . . . . . . . . . . . . . . . . . 66
6.5.2. 402 Payment Required ...............................59 6.3.5. Media Type multipart/byteranges . . . . . . . . . . . 68
6.5.3. 403 Forbidden ......................................59 6.4. Content Negotiation . . . . . . . . . . . . . . . . . . . 70
6.5.4. 404 Not Found ......................................59 6.4.1. Proactive Negotiation . . . . . . . . . . . . . . . . 71
6.5.5. 405 Method Not Allowed .............................59 6.4.2. Reactive Negotiation . . . . . . . . . . . . . . . . 72
6.5.6. 406 Not Acceptable .................................60 7. Request Methods . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.7. 408 Request Timeout ................................60 7.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.8. 409 Conflict .......................................60 7.2. Common Method Properties . . . . . . . . . . . . . . . . 74
6.5.9. 410 Gone ...........................................60 7.2.1. Safe Methods . . . . . . . . . . . . . . . . . . . . 75
6.5.10. 411 Length Required ...............................61 7.2.2. Idempotent Methods . . . . . . . . . . . . . . . . . 76
6.5.11. 413 Payload Too Large .............................61 7.2.3. Methods and Caching . . . . . . . . . . . . . . . . . 77
6.5.12. 414 URI Too Long ..................................61 7.3. Method Definitions . . . . . . . . . . . . . . . . . . . 77
6.5.13. 415 Unsupported Media Type ........................62 7.3.1. GET . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5.14. 417 Expectation Failed ............................62 7.3.2. HEAD . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5.15. 426 Upgrade Required ..............................62 7.3.3. POST . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6. Server Error 5xx ..........................................62 7.3.4. PUT . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6.1. 500 Internal Server Error ..........................63 7.3.5. DELETE . . . . . . . . . . . . . . . . . . . . . . . 82
6.6.2. 501 Not Implemented ................................63 7.3.6. CONNECT . . . . . . . . . . . . . . . . . . . . . . . 83
6.6.3. 502 Bad Gateway ....................................63 7.3.7. OPTIONS . . . . . . . . . . . . . . . . . . . . . . . 85
6.6.4. 503 Service Unavailable ............................63 7.3.8. TRACE . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6.5. 504 Gateway Timeout ................................63 7.4. Method Extensibility . . . . . . . . . . . . . . . . . . 86
6.6.6. 505 HTTP Version Not Supported .....................64 7.4.1. Method Registry . . . . . . . . . . . . . . . . . . . 86
7. Response Header Fields .........................................64 7.4.2. Considerations for New Methods . . . . . . . . . . . 87
7.1. Control Data ..............................................64 8. Request Header Fields . . . . . . . . . . . . . . . . . . . . 87
7.1.1. Origination Date ...................................65 8.1. Controls . . . . . . . . . . . . . . . . . . . . . . . . 88
7.1.2. Location ...........................................68 8.1.1. Expect . . . . . . . . . . . . . . . . . . . . . . . 88
7.1.3. Retry-After ........................................69 8.1.2. Max-Forwards . . . . . . . . . . . . . . . . . . . . 90
7.1.4. Vary ...............................................70 8.2. Preconditions . . . . . . . . . . . . . . . . . . . . . . 91
7.2. Validator Header Fields ...................................71 8.2.1. Evaluation . . . . . . . . . . . . . . . . . . . . . 92
7.3. Authentication Challenges .................................72 8.2.2. Precedence . . . . . . . . . . . . . . . . . . . . . 93
7.4. Response Context ..........................................72 8.2.3. If-Match . . . . . . . . . . . . . . . . . . . . . . 95
7.4.1. Allow ..............................................72 8.2.4. If-None-Match . . . . . . . . . . . . . . . . . . . . 96
7.4.2. Server .............................................73 8.2.5. If-Modified-Since . . . . . . . . . . . . . . . . . . 97
8. IANA Considerations ............................................73 8.2.6. If-Unmodified-Since . . . . . . . . . . . . . . . . . 98
8.1. Method Registry ...........................................73 8.2.7. If-Range . . . . . . . . . . . . . . . . . . . . . . 100
8.1.1. Procedure ..........................................74 8.3. Range . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.1.2. Considerations for New Methods .....................74 8.4. Content Negotiation . . . . . . . . . . . . . . . . . . . 102
8.1.3. Registrations ......................................75 8.4.1. Quality Values . . . . . . . . . . . . . . . . . . . 103
8.2. Status Code Registry ......................................75 8.4.2. Accept . . . . . . . . . . . . . . . . . . . . . . . 104
8.2.1. Procedure ..........................................75 8.4.3. Accept-Charset . . . . . . . . . . . . . . . . . . . 106
8.2.2. Considerations for New Status Codes ................76 8.4.4. Accept-Encoding . . . . . . . . . . . . . . . . . . . 107
8.2.3. Registrations ......................................76 8.4.5. Accept-Language . . . . . . . . . . . . . . . . . . . 108
8.3. Header Field Registry .....................................77 8.5. Authentication Credentials . . . . . . . . . . . . . . . 109
8.3.1. Considerations for New Header Fields ...............78 8.5.1. Challenge and Response . . . . . . . . . . . . . . . 109
8.3.2. Registrations ......................................80 8.5.2. Protection Space (Realm) . . . . . . . . . . . . . . 111
8.4. Content Coding Registry ...................................81 8.5.3. Authorization . . . . . . . . . . . . . . . . . . . . 112
8.4.1. Procedure ..........................................81 8.5.4. Proxy-Authorization . . . . . . . . . . . . . . . . . 112
8.4.2. Registrations ......................................81 8.5.5. Authentication Scheme Extensibility . . . . . . . . . 113
9. Security Considerations ........................................81 8.6. Request Context . . . . . . . . . . . . . . . . . . . . . 115
9.1. Attacks Based on File and Path Names ......................82 8.6.1. From . . . . . . . . . . . . . . . . . . . . . . . . 115
9.2. Attacks Based on Command, Code, or Query Injection ........82 8.6.2. Referer . . . . . . . . . . . . . . . . . . . . . . . 116
9.3. Disclosure of Personal Information ........................83 8.6.3. User-Agent . . . . . . . . . . . . . . . . . . . . . 117
9.4. Disclosure of Sensitive Information in URIs ...............83 9. Response Status Codes . . . . . . . . . . . . . . . . . . . . 118
9.5. Disclosure of Fragment after Redirects ....................84 9.1. Overview of Status Codes . . . . . . . . . . . . . . . . 119
9.6. Disclosure of Product Information .........................84 9.2. Informational 1xx . . . . . . . . . . . . . . . . . . . . 120
9.7. Browser Fingerprinting ....................................84 9.2.1. 100 Continue . . . . . . . . . . . . . . . . . . . . 121
10. Acknowledgments ...............................................85 9.2.2. 101 Switching Protocols . . . . . . . . . . . . . . . 121
11. References ....................................................85 9.3. Successful 2xx . . . . . . . . . . . . . . . . . . . . . 121
11.1. Normative References .....................................85 9.3.1. 200 OK . . . . . . . . . . . . . . . . . . . . . . . 121
11.2. Informative References ...................................86 9.3.2. 201 Created . . . . . . . . . . . . . . . . . . . . . 122
Appendix A. Differences between HTTP and MIME .....................89 9.3.3. 202 Accepted . . . . . . . . . . . . . . . . . . . . 122
A.1. MIME-Version ..............................................89 9.3.4. 203 Non-Authoritative Information . . . . . . . . . . 123
A.2. Conversion to Canonical Form ..............................89 9.3.5. 204 No Content . . . . . . . . . . . . . . . . . . . 123
A.3. Conversion of Date Formats ................................90 9.3.6. 205 Reset Content . . . . . . . . . . . . . . . . . . 124
A.4. Conversion of Content-Encoding ..........................90 9.3.7. 206 Partial Content . . . . . . . . . . . . . . . . . 124
A.5. Conversion of Content-Transfer-Encoding .................90 9.4. Redirection 3xx . . . . . . . . . . . . . . . . . . . . . 127
A.6. MHTML and Line Length Limitations .........................90 9.4.1. 300 Multiple Choices . . . . . . . . . . . . . . . . 129
Appendix B. Changes from RFC 2616 .................................91 9.4.2. 301 Moved Permanently . . . . . . . . . . . . . . . . 130
Appendix C. Imported ABNF .........................................93 9.4.3. 302 Found . . . . . . . . . . . . . . . . . . . . . . 130
Appendix D. Collected ABNF ........................................94 9.4.4. 303 See Other . . . . . . . . . . . . . . . . . . . . 131
Index .............................................................97 9.4.5. 304 Not Modified . . . . . . . . . . . . . . . . . . 131
9.4.6. 305 Use Proxy . . . . . . . . . . . . . . . . . . . . 132
9.4.7. 306 (Unused) . . . . . . . . . . . . . . . . . . . . 132
9.4.8. 307 Temporary Redirect . . . . . . . . . . . . . . . 132
9.4.9. 308 Permanent Redirect . . . . . . . . . . . . . . . 133
9.5. Client Error 4xx . . . . . . . . . . . . . . . . . . . . 133
9.5.1. 400 Bad Request . . . . . . . . . . . . . . . . . . . 133
9.5.2. 401 Unauthorized . . . . . . . . . . . . . . . . . . 133
9.5.3. 402 Payment Required . . . . . . . . . . . . . . . . 134
9.5.4. 403 Forbidden . . . . . . . . . . . . . . . . . . . . 134
9.5.5. 404 Not Found . . . . . . . . . . . . . . . . . . . . 134
9.5.6. 405 Method Not Allowed . . . . . . . . . . . . . . . 135
9.5.7. 406 Not Acceptable . . . . . . . . . . . . . . . . . 135
9.5.8. 407 Proxy Authentication Required . . . . . . . . . . 135
9.5.9. 408 Request Timeout . . . . . . . . . . . . . . . . . 135
9.5.10. 409 Conflict . . . . . . . . . . . . . . . . . . . . 136
9.5.11. 410 Gone . . . . . . . . . . . . . . . . . . . . . . 136
9.5.12. 411 Length Required . . . . . . . . . . . . . . . . . 136
9.5.13. 412 Precondition Failed . . . . . . . . . . . . . . . 137
9.5.14. 413 Payload Too Large . . . . . . . . . . . . . . . . 137
9.5.15. 414 URI Too Long . . . . . . . . . . . . . . . . . . 137
9.5.16. 415 Unsupported Media Type . . . . . . . . . . . . . 137
9.5.17. 416 Range Not Satisfiable . . . . . . . . . . . . . . 138
9.5.18. 417 Expectation Failed . . . . . . . . . . . . . . . 138
9.5.19. 418 (Unused) . . . . . . . . . . . . . . . . . . . . 138
9.5.20. 422 Unprocessable Payload . . . . . . . . . . . . . . 139
9.5.21. 426 Upgrade Required . . . . . . . . . . . . . . . . 139
9.6. Server Error 5xx . . . . . . . . . . . . . . . . . . . . 139
9.6.1. 500 Internal Server Error . . . . . . . . . . . . . . 140
9.6.2. 501 Not Implemented . . . . . . . . . . . . . . . . . 140
9.6.3. 502 Bad Gateway . . . . . . . . . . . . . . . . . . . 140
9.6.4. 503 Service Unavailable . . . . . . . . . . . . . . . 140
9.6.5. 504 Gateway Timeout . . . . . . . . . . . . . . . . . 140
9.6.6. 505 HTTP Version Not Supported . . . . . . . . . . . 140
9.7. Status Code Extensibility . . . . . . . . . . . . . . . . 141
9.7.1. Status Code Registry . . . . . . . . . . . . . . . . 141
9.7.2. Considerations for New Status Codes . . . . . . . . . 141
10. Response Header Fields . . . . . . . . . . . . . . . . . . . 142
10.1. Control Data . . . . . . . . . . . . . . . . . . . . . . 142
10.1.1. Origination Date . . . . . . . . . . . . . . . . . . 143
10.1.2. Location . . . . . . . . . . . . . . . . . . . . . . 146
10.1.3. Retry-After . . . . . . . . . . . . . . . . . . . . 147
10.1.4. Vary . . . . . . . . . . . . . . . . . . . . . . . . 147
10.2. Validators . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.1. Weak versus Strong . . . . . . . . . . . . . . . . . 150
10.2.2. Last-Modified . . . . . . . . . . . . . . . . . . . 151
10.2.3. ETag . . . . . . . . . . . . . . . . . . . . . . . . 153
10.2.4. When to Use Entity-Tags and Last-Modified Dates . . 157
10.3. Authentication Challenges . . . . . . . . . . . . . . . 157
10.3.1. WWW-Authenticate . . . . . . . . . . . . . . . . . . 158
10.3.2. Proxy-Authenticate . . . . . . . . . . . . . . . . . 159
10.3.3. Authentication-Info . . . . . . . . . . . . . . . . 159
10.3.4. Proxy-Authentication-Info . . . . . . . . . . . . . 160
10.4. Response Context . . . . . . . . . . . . . . . . . . . . 161
10.4.1. Accept-Ranges . . . . . . . . . . . . . . . . . . . 161
10.4.2. Allow . . . . . . . . . . . . . . . . . . . . . . . 161
10.4.3. Server . . . . . . . . . . . . . . . . . . . . . . . 162
11. Security Considerations . . . . . . . . . . . . . . . . . . . 163
11.1. Establishing Authority . . . . . . . . . . . . . . . . . 163
11.2. Risks of Intermediaries . . . . . . . . . . . . . . . . 164
11.3. Attacks Based on File and Path Names . . . . . . . . . . 165
11.4. Attacks Based on Command, Code, or Query Injection . . . 165
11.5. Attacks via Protocol Element Length . . . . . . . . . . 166
11.6. Disclosure of Personal Information . . . . . . . . . . . 166
11.7. Privacy of Server Log Information . . . . . . . . . . . 166
11.8. Disclosure of Sensitive Information in URIs . . . . . . 167
11.9. Disclosure of Fragment after Redirects . . . . . . . . . 167
11.10. Disclosure of Product Information . . . . . . . . . . . 168
11.11. Browser Fingerprinting . . . . . . . . . . . . . . . . . 168
11.12. Validator Retention . . . . . . . . . . . . . . . . . . 169
11.13. Denial-of-Service Attacks Using Range . . . . . . . . . 170
11.14. Authentication Considerations . . . . . . . . . . . . . 170
11.14.1. Confidentiality of Credentials . . . . . . . . . . 170
11.14.2. Credentials and Idle Clients . . . . . . . . . . . 171
11.14.3. Protection Spaces . . . . . . . . . . . . . . . . . 171
11.14.4. Additional Response Fields . . . . . . . . . . . . 172
12. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 172
12.1. URI Scheme Registration . . . . . . . . . . . . . . . . 172
12.2. Method Registration . . . . . . . . . . . . . . . . . . 172
12.3. Status Code Registration . . . . . . . . . . . . . . . . 172
12.4. HTTP Field Name Registration . . . . . . . . . . . . . . 173
12.5. Authentication Scheme Registration . . . . . . . . . . . 173
12.6. Content Coding Registration . . . . . . . . . . . . . . 173
12.7. Range Unit Registration . . . . . . . . . . . . . . . . 174
12.8. Media Type Registration . . . . . . . . . . . . . . . . 174
12.9. Port Registration . . . . . . . . . . . . . . . . . . . 174
13. References . . . . . . . . . . . . . . . . . . . . . . . . . 174
13.1. Normative References . . . . . . . . . . . . . . . . . . 174
13.2. Informative References . . . . . . . . . . . . . . . . . 176
Appendix A. Collected ABNF . . . . . . . . . . . . . . . . . . . 182
Appendix B. Changes from previous RFCs . . . . . . . . . . . . . 186
B.1. Changes from RFC 2818 . . . . . . . . . . . . . . . . . . 186
B.2. Changes from RFC 7230 . . . . . . . . . . . . . . . . . . 186
B.3. Changes from RFC 7231 . . . . . . . . . . . . . . . . . . 187
B.4. Changes from RFC 7232 . . . . . . . . . . . . . . . . . . 188
B.5. Changes from RFC 7233 . . . . . . . . . . . . . . . . . . 188
B.6. Changes from RFC 7235 . . . . . . . . . . . . . . . . . . 188
B.7. Changes from RFC 7538 . . . . . . . . . . . . . . . . . . 188
B.8. Changes from RFC 7615 . . . . . . . . . . . . . . . . . . 188
Appendix C. Change Log . . . . . . . . . . . . . . . . . . . . . 188
C.1. Between RFC723x and draft 00 . . . . . . . . . . . . . . 188
C.2. Since draft-ietf-httpbis-semantics-00 . . . . . . . . . . 189
C.3. Since draft-ietf-httpbis-semantics-01 . . . . . . . . . . 189
C.4. Since draft-ietf-httpbis-semantics-02 . . . . . . . . . . 191
C.5. Since draft-ietf-httpbis-semantics-03 . . . . . . . . . . 192
C.6. Since draft-ietf-httpbis-semantics-04 . . . . . . . . . . 192
C.7. Since draft-ietf-httpbis-semantics-05 . . . . . . . . . . 193
C.8. Since draft-ietf-httpbis-semantics-06 . . . . . . . . . . 194
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 205
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 206
1. Introduction 1. Introduction
The Hypertext Transfer Protocol (HTTP) is a stateless application-
level request/response protocol that uses extensible semantics and
self-descriptive messages for flexible interaction with network-based
hypertext information systems. HTTP is defined by a series of
documents that collectively form the HTTP/1.1 specification:
o "HTTP Semantics" (this document)
o "HTTP Caching" [Caching]
o "HTTP/1.1 Messaging" [Messaging]
HTTP is a generic interface protocol for information systems. It is HTTP is a generic interface protocol for information systems. It is
designed to hide the details of how a service is implemented by designed to hide the details of how a service is implemented by
presenting a uniform interface to clients that is independent of the presenting a uniform interface to clients that is independent of the
types of resources provided. Likewise, servers do not need to be types of resources provided. Likewise, servers do not need to be
aware of each client's purpose: an HTTP request can be considered in aware of each client's purpose: an HTTP request can be considered in
isolation rather than being associated with a specific type of client isolation rather than being associated with a specific type of client
or a predetermined sequence of application steps. The result is a or a predetermined sequence of application steps. The result is a
protocol that can be used effectively in many different contexts and protocol that can be used effectively in many different contexts and
for which implementations can evolve independently over time. for which implementations can evolve independently over time.
skipping to change at line 247 skipping to change at page 8, line 46
One consequence of this flexibility is that the protocol cannot be One consequence of this flexibility is that the protocol cannot be
defined in terms of what occurs behind the interface. Instead, we defined in terms of what occurs behind the interface. Instead, we
are limited to defining the syntax of communication, the intent of are limited to defining the syntax of communication, the intent of
received communication, and the expected behavior of recipients. If received communication, and the expected behavior of recipients. If
the communication is considered in isolation, then successful actions the communication is considered in isolation, then successful actions
ought to be reflected in corresponding changes to the observable ought to be reflected in corresponding changes to the observable
interface provided by servers. However, since multiple clients might interface provided by servers. However, since multiple clients might
act in parallel and perhaps at cross-purposes, we cannot require that act in parallel and perhaps at cross-purposes, we cannot require that
such changes be observable beyond the scope of a single response. such changes be observable beyond the scope of a single response.
Each Hypertext Transfer Protocol (HTTP) message is either a request Each HTTP message is either a request or a response. A server
or a response. A server listens on a connection for a request, listens on a connection for a request, parses each message received,
parses each message received, interprets the message semantics in interprets the message semantics in relation to the identified
relation to the identified request target, and responds to that request target, and responds to that request with one or more
request with one or more response messages. A client constructs response messages. A client constructs request messages to
request messages to communicate specific intentions, examines communicate specific intentions, examines received responses to see
received responses to see if the intentions were carried out, and if the intentions were carried out, and determines how to interpret
determines how to interpret the results. This document defines the results.
HTTP/1.1 request and response semantics in terms of the architecture
defined in [RFC7230].
HTTP provides a uniform interface for interacting with a resource HTTP provides a uniform interface for interacting with a resource
(Section 2), regardless of its type, nature, or implementation, via (Section 2.5), regardless of its type, nature, or implementation, via
the manipulation and transfer of representations (Section 3). the manipulation and transfer of representations (Section 6).
HTTP semantics include the intentions defined by each request method This document defines semantics that are common to all versions of
(Section 4), extensions to those semantics that might be described in HTTP. HTTP semantics include the intentions defined by each request
request header fields (Section 5), the meaning of status codes to method (Section 7), extensions to those semantics that might be
indicate a machine-readable response (Section 6), and the meaning of described in request header fields (Section 8), the meaning of status
other control data and resource metadata that might be given in codes to indicate a machine-readable response (Section 9), and the
response header fields (Section 7). meaning of other control data and resource metadata that might be
given in response header fields (Section 10).
This document also defines representation metadata that describe how This document also defines representation metadata that describe how
a payload is intended to be interpreted by a recipient, the request a payload is intended to be interpreted by a recipient, the request
header fields that might influence content selection, and the various header fields that might influence content selection, and the various
selection algorithms that are collectively referred to as "content selection algorithms that are collectively referred to as "content
negotiation" (Section 3.4). negotiation" (Section 6.4).
This document defines HTTP/1.1 range requests, partial responses, and This document defines HTTP range requests, partial responses, and the
the multipart/byteranges media type. multipart/byteranges media type.
1.1. Conformance and Error Handling This document obsoletes the portions of RFC 7230 that are independent
of the HTTP/1.1 messaging syntax and connection management, with the
changes being summarized in Appendix B.2. The other parts of RFC
7230 are obsoleted by "HTTP/1.1 Messaging" [Messaging]. This
document also obsoletes RFC 2818 (see Appendix B.1), RFC 7231 (see
Appendix B.3), RFC 7232 (see Appendix B.4), RFC 7233 (see
Appendix B.5), RFC 7235 (see Appendix B.6), RFC 7538 (see
Appendix B.7), and RFC 7615 (see Appendix B.8).
1.1. Requirements Notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
document are to be interpreted as described in [RFC2119]. "OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
Conformance criteria and considerations regarding error handling are Conformance criteria and considerations regarding error handling are
defined in Section 2.5 of [RFC7230]. defined in Section 3.
1.2. Syntax Notation 1.2. Syntax Notation
This specification uses the Augmented Backus-Naur Form (ABNF) This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234] with a list extension, defined in Section 7 of notation of [RFC5234], extended with the notation for case-
[RFC7230], that allows for compact definition of comma-separated sensitivity in strings defined in [RFC7405].
lists using a '#' operator (similar to how the '*' operator indicates
repetition). Appendix C describes rules imported from other It also uses a list extension, defined in Section 4.5, that allows
documents. Appendix D shows the collected grammar with all list for compact definition of comma-separated lists using a '#' operator
operators expanded to standard ABNF notation. (similar to how the '*' operator indicates repetition). Appendix A
shows the collected grammar with all list operators expanded to
standard ABNF notation.
As a convention, ABNF rule names prefixed with "obs-" denote As a convention, ABNF rule names prefixed with "obs-" denote
"obsolete" grammar rules that appear for historical reasons. "obsolete" grammar rules that appear for historical reasons.
The following core rules are included by reference, as defined in The following core rules are included by reference, as defined in
Appendix B.1 of [RFC5234]: ALPHA (letters), CR (carriage return), Appendix B.1 of [RFC5234]: ALPHA (letters), CR (carriage return),
CRLF (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double CRLF (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double
quote), HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF quote), HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF
(line feed), OCTET (any 8-bit sequence of data), SP (space), and (line feed), OCTET (any 8-bit sequence of data), SP (space), and
VCHAR (any visible US-ASCII character). VCHAR (any visible US-ASCII character).
Section 4.4.1 defines some generic syntactic components for field
values.
The rules below are defined in [Messaging]:
obs-fold = <obs-fold, see [Messaging], Section 5.2>
protocol-name = <protocol-name, see [Messaging], Section 9.9>
protocol-version = <protocol-version, see [Messaging], Section 9.9>
request-target = <request-target, see [Messaging], Section 3.2>
This specification uses the terms "character", "character encoding This specification uses the terms "character", "character encoding
scheme", "charset", and "protocol element" as they are defined in scheme", "charset", and "protocol element" as they are defined in
[RFC6365]. [RFC6365].
3.2.3. Whitespace 1.2.1. Whitespace
This specification uses three rules to denote the use of linear This specification uses three rules to denote the use of linear
whitespace: OWS (optional whitespace), RWS (required whitespace), and whitespace: OWS (optional whitespace), RWS (required whitespace), and
BWS ("bad" whitespace). BWS ("bad" whitespace).
The OWS rule is used where zero or more linear whitespace octets The OWS rule is used where zero or more linear whitespace octets
might appear. For protocol elements where optional whitespace is might appear. For protocol elements where optional whitespace is
preferred to improve readability, a sender SHOULD generate the preferred to improve readability, a sender SHOULD generate the
optional whitespace as a single SP; otherwise, a sender SHOULD NOT optional whitespace as a single SP; otherwise, a sender SHOULD NOT
generate optional whitespace except as needed to white out invalid or generate optional whitespace except as needed to white out invalid or
unwanted protocol elements during in-place message filtering. unwanted protocol elements during in-place message filtering.
The RWS rule is used when at least one linear whitespace octet is The RWS rule is used when at least one linear whitespace octet is
required to separate field tokens. A sender SHOULD generate RWS as a required to separate field tokens. A sender SHOULD generate RWS as a
single SP. single SP.
OWS and RWS have the same semantics as a single SP. Any content
known to be defined as OWS or RWS MAY be replaced with a single SP
before interpreting it or forwarding the message downstream.
The BWS rule is used where the grammar allows optional whitespace The BWS rule is used where the grammar allows optional whitespace
only for historical reasons. A sender MUST NOT generate BWS in only for historical reasons. A sender MUST NOT generate BWS in
messages. A recipient MUST parse for such bad whitespace and remove messages. A recipient MUST parse for such bad whitespace and remove
it before interpreting the protocol element. it before interpreting the protocol element.
BWS has no semantics. Any content known to be defined as BWS MAY be
removed before interpreting it or forwarding the message downstream.
OWS = *( SP / HTAB ) OWS = *( SP / HTAB )
; optional whitespace ; optional whitespace
RWS = 1*( SP / HTAB ) RWS = 1*( SP / HTAB )
; required whitespace ; required whitespace
BWS = OWS BWS = OWS
; "bad" whitespace ; "bad" whitespace
2. Architecture 2. Architecture
HTTP was created for the World Wide Web (WWW) architecture and has HTTP was created for the World Wide Web (WWW) architecture and has
evolved over time to support the scalability needs of a worldwide evolved over time to support the scalability needs of a worldwide
hypertext system. Much of that architecture is reflected in the hypertext system. Much of that architecture is reflected in the
terminology and syntax productions used to define HTTP. terminology and syntax productions used to define HTTP.
2.1. Client/Server Messaging 2.1. Client/Server Messaging
HTTP is a stateless request/response protocol that operates by HTTP is a stateless request/response protocol that operates by
exchanging messages (Section 3) across a reliable transport- or exchanging messages (Section 2 of [Messaging]) across a reliable
session-layer "connection" (Section 6). An HTTP "client" is a transport- or session-layer "connection" (Section 9 of [Messaging]).
program that establishes a connection to a server for the purpose of An HTTP "client" is a program that establishes a connection to a
sending one or more HTTP requests. An HTTP "server" is a program server for the purpose of sending one or more HTTP requests. An HTTP
that accepts connections in order to service HTTP requests by sending "server" is a program that accepts connections in order to service
HTTP responses. HTTP requests by sending HTTP responses.
The terms "client" and "server" refer only to the roles that these The terms "client" and "server" refer only to the roles that these
programs perform for a particular connection. The same program might programs perform for a particular connection. The same program might
act as a client on some connections and a server on others. The term act as a client on some connections and a server on others. The term
"user agent" refers to any of the various client programs that "user agent" refers to any of the various client programs that
initiate a request, including (but not limited to) browsers, spiders initiate a request, including (but not limited to) browsers, spiders
(web-based robots), command-line tools, custom applications, and (web-based robots), command-line tools, custom applications, and
mobile apps. The term "origin server" refers to the program that can mobile apps. The term "origin server" refers to the program that can
originate authoritative responses for a given target resource. The originate authoritative responses for a given target resource. The
terms "sender" and "recipient" refer to any implementation that sends terms "sender" and "recipient" refer to any implementation that sends
or receives a given message, respectively. or receives a given message, respectively.
HTTP relies upon the Uniform Resource Identifier (URI) standard HTTP relies upon the Uniform Resource Identifier (URI) standard
[RFC3986] to indicate the target resource (Section 5.1) and [RFC3986] to indicate the target resource (Section 5.1) and
relationships between resources. Messages are passed in a format relationships between resources.
similar to that used by Internet mail [RFC5322] and the Multipurpose
Internet Mail Extensions (MIME) [RFC2045] (see Appendix A of
[RFC7231] for the differences between HTTP and MIME messages).
Most HTTP communication consists of a retrieval request (GET) for a Most HTTP communication consists of a retrieval request (GET) for a
representation of some resource identified by a URI. In the simplest representation of some resource identified by a URI. In the simplest
case, this might be accomplished via a single bidirectional case, this might be accomplished via a single bidirectional
connection (===) between the user agent (UA) and the origin connection (===) between the user agent (UA) and the origin server
server (O). (O).
request > request >
UA ======================================= O UA ======================================= O
< response < response
Each major version of HTTP defines its own syntax for the inclusion
of information in messages. Nevertheless, a common abstraction is
that a message includes some form of envelope/framing, a potential
set of named fields up front (a header section), a potential body,
and a potential following set of named fields (a trailer section).
A client sends an HTTP request to a server in the form of a request A client sends an HTTP request to a server in the form of a request
message, beginning with a request-line that includes a method, URI, message, beginning with a method (Section 7) and URI, followed by
and protocol version (Section 3.1.1), followed by header fields header fields containing request modifiers, client information, and
containing request modifiers, client information, and representation representation metadata (Section 4), and finally a payload body (if
metadata (Section 3.2), an empty line to indicate the end of the any, Section 6.3.3).
header section, and finally a message body containing the payload
body (if any, Section 3.3).
A server responds to a client's request by sending one or more HTTP A server responds to a client's request by sending one or more HTTP
response messages, each beginning with a status line that includes response messages, each beginning with a success or error code
the protocol version, a success or error code, and textual reason (Section 9), possibly followed by header fields containing server
phrase (Section 3.1.2), possibly followed by header fields containing information, resource metadata, and representation metadata
server information, resource metadata, and representation metadata (Section 4), and finally a payload body (if any, Section 6.3.3).
(Section 3.2), an empty line to indicate the end of the header
section, and finally a message body containing the payload body (if
any, Section 3.3).
A connection might be used for multiple request/response exchanges, A connection might be used for multiple request/response exchanges.
as defined in Section 6.3. The mechanism used to correlate between request and response messages
is version dependent; some versions of HTTP use implicit ordering of
messages, while others use an explicit identifier.
Responses (both final and interim) can be sent at any time after a
request is received, even if it is not yet complete. However,
clients (including intermediaries) might abandon a request if the
response is not forthcoming within a reasonable period of time.
The following example illustrates a typical message exchange for a The following example illustrates a typical message exchange for a
GET request (Section 4.3.1 of [RFC7231]) on the URI GET request (Section 7.3.1) on the URI "http://www.example.com/
"http://www.example.com/hello.txt": hello.txt":
Client request: Client request:
GET /hello.txt HTTP/1.1 GET /hello.txt HTTP/1.1
User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3 User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
Host: www.example.com Host: www.example.com
Accept-Language: en, mi Accept-Language: en, mi
Server response: Server response:
skipping to change at line 430 skipping to change at page 13, line 26
Server: Apache Server: Apache
Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00" ETag: "34aa387-d-1568eb00"
Accept-Ranges: bytes Accept-Ranges: bytes
Content-Length: 51 Content-Length: 51
Vary: Accept-Encoding Vary: Accept-Encoding
Content-Type: text/plain Content-Type: text/plain
Hello World! My payload includes a trailing CRLF. Hello World! My payload includes a trailing CRLF.
2.3. Intermediaries 2.2. Intermediaries
HTTP enables the use of intermediaries to satisfy requests through a HTTP enables the use of intermediaries to satisfy requests through a
chain of connections. There are three common forms of HTTP chain of connections. There are three common forms of HTTP
intermediary: proxy, gateway, and tunnel. In some cases, a single intermediary: proxy, gateway, and tunnel. In some cases, a single
intermediary might act as an origin server, proxy, gateway, or intermediary might act as an origin server, proxy, gateway, or
tunnel, switching behavior based on the nature of each request. tunnel, switching behavior based on the nature of each request.
> > > > > > > >
UA =========== A =========== B =========== C =========== O UA =========== A =========== B =========== C =========== O
< < < < < < < <
skipping to change at line 498 skipping to change at page 14, line 47
However, an HTTP-to-HTTP gateway that wishes to interoperate with However, an HTTP-to-HTTP gateway that wishes to interoperate with
third-party HTTP servers ought to conform to user agent requirements third-party HTTP servers ought to conform to user agent requirements
on the gateway's inbound connection. on the gateway's inbound connection.
A "tunnel" acts as a blind relay between two connections without A "tunnel" acts as a blind relay between two connections without
changing the messages. Once active, a tunnel is not considered a changing the messages. Once active, a tunnel is not considered a
party to the HTTP communication, though the tunnel might have been party to the HTTP communication, though the tunnel might have been
initiated by an HTTP request. A tunnel ceases to exist when both initiated by an HTTP request. A tunnel ceases to exist when both
ends of the relayed connection are closed. Tunnels are used to ends of the relayed connection are closed. Tunnels are used to
extend a virtual connection through an intermediary, such as when extend a virtual connection through an intermediary, such as when
Transport Layer Security (TLS, [RFC5246]) is used to establish Transport Layer Security (TLS, [RFC8446]) is used to establish
confidential communication through a shared firewall proxy. confidential communication through a shared firewall proxy.
The above categories for intermediary only consider those acting as The above categories for intermediary only consider those acting as
participants in the HTTP communication. There are also participants in the HTTP communication. There are also
intermediaries that can act on lower layers of the network protocol intermediaries that can act on lower layers of the network protocol
stack, filtering or redirecting HTTP traffic without the knowledge or stack, filtering or redirecting HTTP traffic without the knowledge or
permission of message senders. Network intermediaries are permission of message senders. Network intermediaries are
indistinguishable (at a protocol level) from a man-in-the-middle indistinguishable (at a protocol level) from a man-in-the-middle
attack, often introducing security flaws or interoperability problems attack, often introducing security flaws or interoperability problems
due to mistakenly violating HTTP semantics. due to mistakenly violating HTTP semantics.
skipping to change at line 530 skipping to change at page 15, line 30
HTTP is defined as a stateless protocol, meaning that each request HTTP is defined as a stateless protocol, meaning that each request
message can be understood in isolation. Many implementations depend message can be understood in isolation. Many implementations depend
on HTTP's stateless design in order to reuse proxied connections or on HTTP's stateless design in order to reuse proxied connections or
dynamically load balance requests across multiple servers. Hence, a dynamically load balance requests across multiple servers. Hence, a
server MUST NOT assume that two requests on the same connection are server MUST NOT assume that two requests on the same connection are
from the same user agent unless the connection is secured and from the same user agent unless the connection is secured and
specific to that agent. Some non-standard HTTP extensions (e.g., specific to that agent. Some non-standard HTTP extensions (e.g.,
[RFC4559]) have been known to violate this requirement, resulting in [RFC4559]) have been known to violate this requirement, resulting in
security and interoperability problems. security and interoperability problems.
2.4. Caches 2.3. Caches
A "cache" is a local store of previous response messages and the A "cache" is a local store of previous response messages and the
subsystem that controls its message storage, retrieval, and deletion. subsystem that controls its message storage, retrieval, and deletion.
A cache stores cacheable responses in order to reduce the response A cache stores cacheable responses in order to reduce the response
time and network bandwidth consumption on future, equivalent time and network bandwidth consumption on future, equivalent
requests. Any client or server MAY employ a cache, though a cache requests. Any client or server MAY employ a cache, though a cache
cannot be used by a server while it is acting as a tunnel. cannot be used by a server while it is acting as a tunnel.
The effect of a cache is that the request/response chain is shortened The effect of a cache is that the request/response chain is shortened
if one of the participants along the chain has a cached response if one of the participants along the chain has a cached response
skipping to change at line 555 skipping to change at page 16, line 7
> > > >
UA =========== A =========== B - - - - - - C - - - - - - O UA =========== A =========== B - - - - - - C - - - - - - O
< < < <
A response is "cacheable" if a cache is allowed to store a copy of A response is "cacheable" if a cache is allowed to store a copy of
the response message for use in answering subsequent requests. Even the response message for use in answering subsequent requests. Even
when a response is cacheable, there might be additional constraints when a response is cacheable, there might be additional constraints
placed by the client or by the origin server on when that cached placed by the client or by the origin server on when that cached
response can be used for a particular request. HTTP requirements for response can be used for a particular request. HTTP requirements for
cache behavior and cacheable responses are defined in Section 2 of cache behavior and cacheable responses are defined in Section 2 of
[RFC7234]. [Caching].
There is a wide variety of architectures and configurations of caches There is a wide variety of architectures and configurations of caches
deployed across the World Wide Web and inside large organizations. deployed across the World Wide Web and inside large organizations.
These include national hierarchies of proxy caches to save These include national hierarchies of proxy caches to save
transoceanic bandwidth, collaborative systems that broadcast or transoceanic bandwidth, collaborative systems that broadcast or
multicast cache entries, archives of pre-fetched cache entries for multicast cache entries, archives of pre-fetched cache entries for
use in off-line or high-latency environments, and so on. use in off-line or high-latency environments, and so on.
2.7. Uniform Resource Identifiers 2.4. Uniform Resource Identifiers
Uniform Resource Identifiers (URIs) [RFC3986] are used throughout Uniform Resource Identifiers (URIs) [RFC3986] are used throughout
HTTP as the means for identifying resources (Section 2 of [RFC7231]). HTTP as the means for identifying resources (Section 2.5). URI
URI references are used to target requests, indicate redirects, and references are used to target requests, indicate redirects, and
define relationships. define relationships.
The definitions of "URI-reference", "absolute-URI", "relative-part", The definitions of "URI-reference", "absolute-URI", "relative-part",
"scheme", "authority", "port", "host", "path-abempty", "segment", "authority", "port", "host", "path-abempty", "segment", and "query"
"query", and "fragment" are adopted from the URI generic syntax. An are adopted from the URI generic syntax. An "absolute-path" rule is
"absolute-path" rule is defined for protocol elements that can defined for protocol elements that can contain a non-empty path
contain a non-empty path component. (This rule differs slightly from component. (This rule differs slightly from the path-abempty rule of
the path-abempty rule of RFC 3986, which allows for an empty path to RFC 3986, which allows for an empty path to be used in references,
be used in references, and path-absolute rule, which does not allow and path-absolute rule, which does not allow paths that begin with
paths that begin with "//".) A "partial-URI" rule is defined for "//".) A "partial-URI" rule is defined for protocol elements that
protocol elements that can contain a relative URI but not a fragment can contain a relative URI but not a fragment component.
component.
URI-reference = <URI-reference, see [RFC3986], Section 4.1> URI-reference = <URI-reference, see [RFC3986], Section 4.1>
absolute-URI = <absolute-URI, see [RFC3986], Section 4.3> absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>
relative-part = <relative-part, see [RFC3986], Section 4.2> relative-part = <relative-part, see [RFC3986], Section 4.2>
scheme = <scheme, see [RFC3986], Section 3.1>
authority = <authority, see [RFC3986], Section 3.2> authority = <authority, see [RFC3986], Section 3.2>
uri-host = <host, see [RFC3986], Section 3.2.2> uri-host = <host, see [RFC3986], Section 3.2.2>
port = <port, see [RFC3986], Section 3.2.3> port = <port, see [RFC3986], Section 3.2.3>
path-abempty = <path-abempty, see [RFC3986], Section 3.3> path-abempty = <path-abempty, see [RFC3986], Section 3.3>
segment = <segment, see [RFC3986], Section 3.3> segment = <segment, see [RFC3986], Section 3.3>
query = <query, see [RFC3986], Section 3.4> query = <query, see [RFC3986], Section 3.4>
fragment = <fragment, see [RFC3986], Section 3.5>
absolute-path = 1*( "/" segment ) absolute-path = 1*( "/" segment )
partial-URI = relative-part [ "?" query ] partial-URI = relative-part [ "?" query ]
Each protocol element in HTTP that allows a URI reference will Each protocol element in HTTP that allows a URI reference will
indicate in its ABNF production whether the element allows any form indicate in its ABNF production whether the element allows any form
of reference (URI-reference), only a URI in absolute form of reference (URI-reference), only a URI in absolute form (absolute-
(absolute-URI), only the path and optional query components, or some URI), only the path and optional query components, or some
combination of the above. Unless otherwise indicated, URI references combination of the above. Unless otherwise indicated, URI references
are parsed relative to the effective request URI (Section 5.5). are parsed relative to the effective request URI (Section 5.5).
2. Resources It is RECOMMENDED that all senders and recipients support, at a
minimum, URIs with lengths of 8000 octets in protocol elements. Note
that this implies some structures and on-wire representations (for
example, the request line in HTTP/1.1) will necessarily be larger in
some cases.
2.5. Resources
The target of an HTTP request is called a "resource". HTTP does not The target of an HTTP request is called a "resource". HTTP does not
limit the nature of a resource; it merely defines an interface that limit the nature of a resource; it merely defines an interface that
might be used to interact with resources. Each resource is might be used to interact with resources. Each resource is
identified by a Uniform Resource Identifier (URI), as described in identified by a Uniform Resource Identifier (URI), as described in
Section 2.7 of [RFC7230]. Section 2.4.
When a client constructs an HTTP/1.1 request message, it sends the
target URI in one of various forms, as defined in (Section 5.3 of
[RFC7230]). When a request is received, the server reconstructs an
effective request URI for the target resource (Section 5.5 of
[RFC7230]).
One design goal of HTTP is to separate resource identification from One design goal of HTTP is to separate resource identification from
request semantics, which is made possible by vesting the request request semantics, which is made possible by vesting the request
semantics in the request method (Section 4) and a few semantics in the request method (Section 7) and a few request-
request-modifying header fields (Section 5). If there is a conflict modifying header fields (Section 8). If there is a conflict between
between the method semantics and any semantic implied by the URI the method semantics and any semantic implied by the URI itself, as
itself, as described in Section 4.2.1, the method semantics take described in Section 7.2.1, the method semantics take precedence.
precedence.
IANA maintains the registry of URI Schemes [BCP115] at
<http://www.iana.org/assignments/uri-schemes/>.
This document defines the following URI schemes. IANA maintains the registry of URI Schemes [BCP35] at
<https://www.iana.org/assignments/uri-schemes/>. Although requests
might target any URI scheme, the following schemes are inherent to
HTTP servers:
+------------+------------------------------------+---------------+ +------------+------------------------------------+---------------+
| URI Scheme | Description | Reference | | URI Scheme | Description | Reference |
+------------+------------------------------------+---------------+ +------------+------------------------------------+---------------+
| http | Hypertext Transfer Protocol | Section 2.7.1 | | http | Hypertext Transfer Protocol | Section 2.5.1 |
| https | Hypertext Transfer Protocol Secure | Section 2.7.2 | | https | Hypertext Transfer Protocol Secure | Section 2.5.2 |
+------------+------------------------------------+---------------+ +------------+------------------------------------+---------------+
Note that the presence of a URI with a given authority component does Note that the presence of an "http" or "https" URI does not imply
not imply that there is always an HTTP server listening for that there is always an HTTP server at the identified origin
connections on that host and port. Anyone can mint a URI. What the listening for connections. Anyone can mint a URI, whether or not a
authority component determines is who has the right to respond server exists and whether or not that server currently maps that
authoritatively to requests that target the identified resource. The identifier to a resource. The delegated nature of registered names
delegated nature of registered names and IP addresses creates a and IP addresses creates a federated namespace whether or not an HTTP
federated namespace, based on control over the indicated host and server is present.
port, whether or not an HTTP server is present.
2.7.1. http URI Scheme 2.5.1. http URI Scheme
The "http" URI scheme is hereby defined for the purpose of minting The "http" URI scheme is hereby defined for minting identifiers
identifiers according to their association with the hierarchical within the hierarchical namespace governed by a potential HTTP origin
namespace governed by a potential HTTP origin server listening for server listening for TCP ([RFC0793]) connections on a given port.
TCP ([RFC0793]) connections on a given port.
http-URI = "http:" "//" authority path-abempty [ "?" query ] http-URI = "http" "://" authority path-abempty [ "?" query ]
[ "#" fragment ]
The origin server for an "http" URI is identified by the authority The origin server for an "http" URI is identified by the authority
component, which includes a host identifier and optional TCP port component, which includes a host identifier and optional port number
([RFC3986], Section 3.2.2). If the port subcomponent is empty or not ([RFC3986], Section 3.2.2). If the port subcomponent is empty or not
given, TCP port 80 (the reserved port for WWW services) is the given, TCP port 80 (the reserved port for WWW services) is the
default. default. The origin determines who has the right to respond
authoritatively to requests that target the identified resource, as
defined in Section 5.4.1.
A sender MUST NOT generate an "http" URI with an empty host A sender MUST NOT generate an "http" URI with an empty host
identifier. A recipient that processes such a URI reference MUST identifier. A recipient that processes such a URI reference MUST
reject it as invalid. reject it as invalid.
The hierarchical path component and optional query component serve The hierarchical path component and optional query component identify
as an identifier for a potential target resource within that the target resource within that origin server's name space.
origin server's name space.
2.7.2. https URI Scheme 2.5.2. https URI Scheme
The "https" URI scheme is hereby defined for the purpose of minting The "https" URI scheme is hereby defined for minting identifiers
identifiers according to their association with the hierarchical within the hierarchical namespace governed by a potential origin
namespace governed by a potential HTTP origin server listening to a server listening for TCP connections on a given port and capable of
given TCP port for TLS-secured connections ([RFC5246]). establishing a TLS ([RFC8446]) connection that has been secured for
HTTP communication. In this context, "secured" specifically means
that the server has been authenticated as acting on behalf of the
identified authority and all HTTP communication with that server has
been protected for confidentiality and integrity through the use of
strong encryption.
https-URI = "https:" "//" authority path-abempty [ "?" query ] https-URI = "https" "://" authority path-abempty [ "?" query ]
[ "#" fragment ]
All of the requirements listed above for the "http" scheme are also The origin server for an "https" URI is identified by the authority
requirements for the "https" scheme, except that TCP port 443 is the component, which includes a host identifier and optional port number
default if the port subcomponent is empty or not given, and the user ([RFC3986], Section 3.2.2). If the port subcomponent is empty or not
agent MUST ensure that its connection to the origin server is secured given, TCP port 443 (the reserved port for HTTP over TLS) is the
through the use of strong encryption, end-to-end, prior to sending default. The origin determines who has the right to respond
the first HTTP request. authoritatively to requests that target the identified resource, as
defined in Section 5.4.2.
Note that the "https" URI scheme depends on both TLS and TCP for A sender MUST NOT generate an "https" URI with an empty host
establishing authority. identifier. A recipient that processes such a URI reference MUST
reject it as invalid.
The process for authoritative access to an "https" identified The hierarchical path component and optional query component identify
resource is defined in [RFC2818]. the target resource within that origin server's name space.
A client MUST ensure that its HTTP requests for an "https" resource
are secured, prior to being communicated, and that it only accepts
secured responses to those requests.
Resources made available via the "https" scheme have no shared Resources made available via the "https" scheme have no shared
identity with the "http" scheme even if their resource identifiers identity with the "http" scheme. They are distinct origins with
indicate the same authority (the same host listening to the same TCP separate namespaces. However, an extension to HTTP that is defined
port). They are distinct namespaces and are considered to be distinct to apply to all origins with the same host, such as the Cookie
origin servers. However, an extension to HTTP that is defined
to apply to entire host domains, such as the Cookie
protocol [RFC6265], can allow information set by one service to protocol [RFC6265], can allow information set by one service to
impact communication with other services within a matching group of impact communication with other services within a matching group of
host domains. host domains.
2.5.4. http and https URI Normalization and Comparison 2.5.3. http and https URI Normalization and Comparison
Since the "http" and "https" schemes conform to the URI generic Since the "http" and "https" schemes conform to the URI generic
syntax, such URIs are normalized and compared according to the syntax, such URIs are normalized and compared according to the
algorithm defined in Section 6 of [RFC3986], using the defaults algorithm defined in Section 6 of [RFC3986], using the defaults
described above for each scheme. described above for each scheme.
If the port is equal to the default port for a scheme, the normal If the port is equal to the default port for a scheme, the normal
form is to omit the port subcomponent. When not being used in form is to omit the port subcomponent. When not being used in
absolute form as the request target of an OPTIONS request, an empty absolute form as the request target of an OPTIONS request, an empty
path component is equivalent to an absolute path of "/", so the path component is equivalent to an absolute path of "/", so the
normal form is to provide a path of "/" instead. The scheme and host normal form is to provide a path of "/" instead. The scheme and host
are case-insensitive and normally provided in lowercase; all other are case-insensitive and normally provided in lowercase; all other
components are compared in a case-sensitive manner. Characters other components are compared in a case-sensitive manner. Characters other
than those in the "reserved" set are equivalent to their than those in the "reserved" set are equivalent to their percent-
percent-encoded octets: the normal form is to not encode them (see encoded octets: the normal form is to not encode them (see Sections
Sections 2.1 and 2.2 of [RFC3986]). 2.1 and 2.2 of [RFC3986]).
For example, the following three URIs are equivalent: For example, the following three URIs are equivalent:
http://example.com:80/~smith/home.html http://example.com:80/~smith/home.html
http://EXAMPLE.com/%7Esmith/home.html http://EXAMPLE.com/%7Esmith/home.html
http://EXAMPLE.com:/%7esmith/home.html http://EXAMPLE.com:/%7esmith/home.html
X.X.X. Deprecated userinfo 2.5.4. Deprecated userinfo
The URI generic syntax for authority also includes a deprecated The URI generic syntax for authority also includes a userinfo
userinfo subcomponent ([RFC3986], Section 3.2.1) for including user subcomponent ([RFC3986], Section 3.2.1) for including user
authentication information in the URI. authentication information in the URI. In that subcomponent, the use
of the format "user:password" is deprecated.
Some implementations make use of the userinfo component for internal Some implementations make use of the userinfo component for internal
configuration of authentication information, such as within command configuration of authentication information, such as within command
invocation options, configuration files, or bookmark lists, even invocation options, configuration files, or bookmark lists, even
though such usage might expose a user identifier or password. though such usage might expose a user identifier or password.
A sender MUST NOT generate the userinfo subcomponent (and its "@" A sender MUST NOT generate the userinfo subcomponent (and its "@"
delimiter) when an "http" URI reference is generated delimiter) when an "http" or "https" URI reference is generated
within a message as a request target or header field value. within a message as a request target or field value.
Before making use of an "http" URI reference received from Before making use of an "http" or "https" URI reference received from
an untrusted source, a recipient SHOULD parse for userinfo and treat an untrusted source, a recipient SHOULD parse for userinfo and treat
its presence as an error; it is likely being used to obscure the its presence as an error; it is likely being used to obscure the
authority for the sake of phishing attacks. authority for the sake of phishing attacks.
2.5.3. Fragment Identifiers on http(s) URI References 2.5.5. Fragment Identifiers on http(s) URI References
The optional fragment component allows for indirect identification of a Fragment identifiers allow for indirect identification of a secondary
secondary resource, independent of the URI scheme, as defined in Section resource, independent of the URI scheme, as defined in Section 3.5 of
3.5 of [RFC3986]. [RFC3986]. Some protocol elements that refer to a URI allow
inclusion of a fragment, while others do not. They are distinguished
by use of the ABNF rule for elements where fragment is allowed;
otherwise, a specific rule that excludes fragments is used (see
Section 5.1).
Note: the fragment identifier component is not part of the actual
scheme definition for a URI scheme (see Section 4.3 of [RFC3986]),
thus does not appear in the ABNF definitions for the "http" and
"https" URI schemes above.
3. Conformance 3. Conformance
2.2. Implementation Diversity 3.1. Implementation Diversity
When considering the design of HTTP, it is easy to fall into a trap When considering the design of HTTP, it is easy to fall into a trap
of thinking that all user agents are general-purpose browsers and all of thinking that all user agents are general-purpose browsers and all
origin servers are large public websites. That is not the case in origin servers are large public websites. That is not the case in
practice. Common HTTP user agents include household appliances, practice. Common HTTP user agents include household appliances,
stereos, scales, firmware update scripts, command-line programs, stereos, scales, firmware update scripts, command-line programs,
mobile apps, and communication devices in a multitude of shapes and mobile apps, and communication devices in a multitude of shapes and
sizes. Likewise, common HTTP origin servers include home automation sizes. Likewise, common HTTP origin servers include home automation
units, configurable networking components, office machines, units, configurable networking components, office machines,
autonomous robots, news feeds, traffic cameras, ad selectors, and autonomous robots, news feeds, traffic cameras, ad selectors, and
skipping to change at line 790 skipping to change at page 21, line 12
warning for security or privacy concerns. In the few cases where warning for security or privacy concerns. In the few cases where
this specification requires reporting of errors to the user, it is this specification requires reporting of errors to the user, it is
acceptable for such reporting to only be observable in an error acceptable for such reporting to only be observable in an error
console or log file. Likewise, requirements that an automated action console or log file. Likewise, requirements that an automated action
be confirmed by the user before proceeding might be met via advance be confirmed by the user before proceeding might be met via advance
configuration choices, run-time options, or simple avoidance of the configuration choices, run-time options, or simple avoidance of the
unsafe action; confirmation does not imply any specific user unsafe action; confirmation does not imply any specific user
interface or interruption of normal processing if the user has interface or interruption of normal processing if the user has
already made that choice. already made that choice.
2.5. Conformance and Error Handling 3.2. Role-based Requirements
This specification targets conformance criteria according to the role This specification targets conformance criteria according to the role
of a participant in HTTP communication. Hence, HTTP requirements are of a participant in HTTP communication. Hence, HTTP requirements are
placed on senders, recipients, clients, servers, user agents, placed on senders, recipients, clients, servers, user agents,
intermediaries, origin servers, proxies, gateways, or caches, intermediaries, origin servers, proxies, gateways, or caches,
depending on what behavior is being constrained by the requirement. depending on what behavior is being constrained by the requirement.
Additional (social) requirements are placed on implementations, Additional (social) requirements are placed on implementations,
resource owners, and protocol element registrations when they apply resource owners, and protocol element registrations when they apply
beyond the scope of a single communication. beyond the scope of a single communication.
skipping to change at line 817 skipping to change at page 21, line 39
Conformance includes both the syntax and semantics of protocol Conformance includes both the syntax and semantics of protocol
elements. A sender MUST NOT generate protocol elements that convey a elements. A sender MUST NOT generate protocol elements that convey a
meaning that is known by that sender to be false. A sender MUST NOT meaning that is known by that sender to be false. A sender MUST NOT
generate protocol elements that do not match the grammar defined by generate protocol elements that do not match the grammar defined by
the corresponding ABNF rules. Within a given message, a sender MUST the corresponding ABNF rules. Within a given message, a sender MUST
NOT generate protocol elements or syntax alternatives that are only NOT generate protocol elements or syntax alternatives that are only
allowed to be generated by participants in other roles (i.e., a role allowed to be generated by participants in other roles (i.e., a role
that the sender does not have for that message). that the sender does not have for that message).
3.3. Parsing Elements
When a received protocol element is parsed, the recipient MUST be When a received protocol element is parsed, the recipient MUST be
able to parse any value of reasonable length that is applicable to able to parse any value of reasonable length that is applicable to
the recipient's role and that matches the grammar defined by the the recipient's role and that matches the grammar defined by the
corresponding ABNF rules. Note, however, that some received protocol corresponding ABNF rules. Note, however, that some received protocol
elements might not be parsed. For example, an intermediary elements might not be parsed. For example, an intermediary
forwarding a message might parse a header-field into generic forwarding a message might parse a field into generic field name and
field-name and field-value components, but then forward the header field value components, but then forward the field without further
field without further parsing inside the field-value. parsing inside the field value.
HTTP does not have specific length limitations for many of its HTTP does not have specific length limitations for many of its
protocol elements because the lengths that might be appropriate will protocol elements because the lengths that might be appropriate will
vary widely, depending on the deployment context and purpose of the vary widely, depending on the deployment context and purpose of the
implementation. Hence, interoperability between senders and implementation. Hence, interoperability between senders and
recipients depends on shared expectations regarding what is a recipients depends on shared expectations regarding what is a
reasonable length for each protocol element. Furthermore, what is reasonable length for each protocol element. Furthermore, what is
commonly understood to be a reasonable length for some protocol commonly understood to be a reasonable length for some protocol
elements has changed over the course of the past two decades of HTTP elements has changed over the course of the past two decades of HTTP
use and is expected to continue changing in the future. use and is expected to continue changing in the future.
At a minimum, a recipient MUST be able to parse and process protocol At a minimum, a recipient MUST be able to parse and process protocol
element lengths that are at least as long as the values that it element lengths that are at least as long as the values that it
generates for those same protocol elements in other messages. For generates for those same protocol elements in other messages. For
example, an origin server that publishes very long URI references to example, an origin server that publishes very long URI references to
its own resources needs to be able to parse and process those same its own resources needs to be able to parse and process those same
references when received as a request target. references when received as a request target.
3.4. Error Handling
A recipient MUST interpret a received protocol element according to A recipient MUST interpret a received protocol element according to
the semantics defined for it by this specification, including the semantics defined for it by this specification, including
extensions to this specification, unless the recipient has determined extensions to this specification, unless the recipient has determined
(through experience or configuration) that the sender incorrectly (through experience or configuration) that the sender incorrectly
implements what is implied by those semantics. For example, an implements what is implied by those semantics. For example, an
origin server might disregard the contents of a received origin server might disregard the contents of a received Accept-
Accept-Encoding header field if inspection of the User-Agent header Encoding header field if inspection of the User-Agent header field
field indicates a specific implementation version that is known to indicates a specific implementation version that is known to fail on
fail on receipt of certain content codings. receipt of certain content codings.
Unless noted otherwise, a recipient MAY attempt to recover a usable Unless noted otherwise, a recipient MAY attempt to recover a usable
protocol element from an invalid construct. HTTP does not define protocol element from an invalid construct. HTTP does not define
specific error handling mechanisms except when they have a direct specific error handling mechanisms except when they have a direct
impact on security, since different applications of the protocol impact on security, since different applications of the protocol
require different error handling strategies. For example, a Web require different error handling strategies. For example, a Web
browser might wish to transparently recover from a response where the browser might wish to transparently recover from a response where the
Location header field doesn't parse according to the ABNF, whereas a Location header field doesn't parse according to the ABNF, whereas a
systems control client might consider any form of error recovery to systems control client might consider any form of error recovery to
be dangerous. be dangerous.
2.6. Protocol Versioning Some requests can be automatically retried by a client in the event
of an underlying connection failure, as described in Section 7.2.2.
3.5. Protocol Versioning
The HTTP version number consists of two decimal digits separated by a The HTTP version number consists of two decimal digits separated by a
"." (period or decimal point). The first digit ("major version") "." (period or decimal point). The first digit ("major version")
indicates the HTTP messaging syntax, whereas the second digit ("minor indicates the HTTP messaging syntax, whereas the second digit ("minor
version") indicates the highest minor version within that major version") indicates the highest minor version within that major
version to which the sender is conformant and able to understand for version to which the sender is conformant and able to understand for
future communication. future communication.
The protocol version as a whole indicates the sender's conformance with The protocol version as a whole indicates the sender's conformance
the set of requirements laid out in that version's corresponding with the set of requirements laid out in that version's corresponding
specification of HTTP. specification of HTTP. For example, the version "HTTP/1.1" is
defined by the combined specifications of this document, "HTTP
Caching" [Caching], and "HTTP/1.1 Messaging" [Messaging].
The minor version advertises the sender's The minor version advertises the sender's communication capabilities
communication capabilities even when the sender is only using a even when the sender is only using a backwards-compatible subset of
backwards-compatible subset of the protocol, thereby letting the the protocol, thereby letting the recipient know that more advanced
recipient know that more advanced features can be used in response features can be used in response (by servers) or in future requests
(by servers) or in future requests (by clients). (by clients).
A client SHOULD send a request version equal to the highest version A client SHOULD send a request version equal to the highest version
to which the client is conformant and whose major version is no to which the client is conformant and whose major version is no
higher than the highest version supported by the server, if this is higher than the highest version supported by the server, if this is
known. A client MUST NOT send a version to which it is not known. A client MUST NOT send a version to which it is not
conformant. conformant.
A client MAY send a lower request version if it is known that the A client MAY send a lower request version if it is known that the
server incorrectly implements the HTTP specification, but only after server incorrectly implements the HTTP specification, but only after
the client has attempted at least one normal request and determined the client has attempted at least one normal request and determined
from the response status code or header fields (e.g., Server) that from the response status code or header fields (e.g., Server) that
the server improperly handles higher request versions. the server improperly handles higher request versions.
A server SHOULD send a response version equal to the highest version A server SHOULD send a response version equal to the highest version
to which the server is conformant that has a major version less than to which the server is conformant that has a major version less than
or equal to the one received in the request. A server MUST NOT send or equal to the one received in the request. A server MUST NOT send
a version to which it is not conformant. A server can send a 505 a version to which it is not conformant. A server can send a 505
(HTTP Version Not Supported) response if it wishes, for any reason, (HTTP Version Not Supported) response if it wishes, for any reason,
to refuse service of the client's major protocol version. to refuse service of the client's major protocol version.
The intention of HTTP's versioning design is that the major number HTTP's major version number is incremented when an incompatible
will only be incremented if an incompatible message syntax is message syntax is introduced. The minor number is incremented when
introduced, and that the minor number will only be incremented when
changes made to the protocol have the effect of adding to the message changes made to the protocol have the effect of adding to the message
semantics or implying additional capabilities of the sender. semantics or implying additional capabilities of the sender.
However, the minor version was not incremented for the changes
introduced between [RFC2068] and [RFC2616], and this revision has
specifically avoided any such changes to the protocol.
When an HTTP message is received with a major version number that the When an HTTP message is received with a major version number that the
recipient implements, but a higher minor version number than what the recipient implements, but a higher minor version number than what the
recipient implements, the recipient SHOULD process the message as if recipient implements, the recipient SHOULD process the message as if
it were in the highest minor version within that major version to it were in the highest minor version within that major version to
which the recipient is conformant. A recipient can assume that a which the recipient is conformant. A recipient can assume that a
message with a higher minor version, when sent to a recipient that message with a higher minor version, when sent to a recipient that
has not yet indicated support for that higher version, is has not yet indicated support for that higher version, is
sufficiently backwards-compatible to be safely processed by any sufficiently backwards-compatible to be safely processed by any
implementation of the same major version. implementation of the same major version.
[When a major version ...] When a major version of HTTP does not define any minor versions, the
minor version "0" is implied and is used when referring to that
protocol within a protocol element that requires sending a minor
version.
4. Header Fields 4. Header and Trailer Fields
Header fields are key:value pairs that can be used to communicate HTTP messages use key/value pairs to convey data about the message,
data about the message, its payload, the target resource, or the its payload, the target resource, or the connection (i.e., control
connection (i.e., control data). See Section 3.2 of [RFC7230] for a data). They are called "HTTP fields" or just "fields".
general definition of header field syntax in HTTP messages.
The interpretation of a header field does not change between minor Every message can have two separate areas that such fields can occur
versions of the same major HTTP version, though the default behavior within; the "header field section" (or just "header section")
of a recipient in the absence of such a field can change. Unless preceding the message body and containing "header fields" (or just
specified otherwise, header fields defined in HTTP/1.1 are defined "headers", colloquially) and the "trailer field section" (or just
for all versions of HTTP/1.x. In particular, the Host and Connection "trailer section") after the message body containing "trailer fields"
header fields ought to be implemented by all HTTP/1.x implementations (or just "trailers" colloquially). Header fields are more common;
whether or not they advertise conformance with HTTP/1.1. see Section 4.6 for discussion of the applicability and limitations
of trailer fields.
New header fields can be introduced without changing the protocol Both sections are composed of any number of "field lines", each with
version if their defined semantics allow them to be safely ignored by a "field name" (see Section 4.3) identifying the field, and a "field
recipients that do not recognize them. Header field extensibility is line value" that conveys data for the field.
discussed in Section 3.2.1.
Each field name present in a section has a corresponding "field
value" for that section, composed from all field line values with
that given field name in that section, concatenated together and
separated with commas. See Section 4.1 for further discussion of the
semantics of field ordering and combination in messages, and
Section 4.4 for more discussion of field values.
For example, this section:
Example-Field: Foo, Bar
Example-Field: Baz
contains two field lines, both with the field name "Example-Field".
The first field line has a field line value of "Foo, Bar", while the
second field line value is "Baz". The field value for "Example-
Field" is a list with three members: "Foo", "Bar", and "Baz".
The interpretation of a field does not change between minor versions
of the same major HTTP version, though the default behavior of a
recipient in the absence of such a field can change. Unless
specified otherwise, fields are defined for all versions of HTTP. In
particular, the Host and Connection fields ought to be implemented by
all HTTP/1.x implementations whether or not they advertise
conformance with HTTP/1.1.
New fields can be introduced without changing the protocol version if
their defined semantics allow them to be safely ignored by recipients
that do not recognize them; see Section 4.3.1.
4.1. Field Ordering and Combination 4.1. Field Ordering and Combination
The order in which header fields with differing field names are The order in which field lines with differing names are received in a
received is not significant. However, it is good practice to send message is not significant. However, it is good practice to send
header fields that contain control data first, such as Host on header fields that contain control data first, such as Host on
requests and Date on responses, so that implementations can decide requests and Date on responses, so that implementations can decide
when not to handle a message as early as possible. A server MUST NOT when not to handle a message as early as possible. A server MUST NOT
apply a request to the target resource until the entire request apply a request to the target resource until the entire request
header section is received, since later header fields might include header section is received, since later header field lines might
conditionals, authentication credentials, or deliberately misleading include conditionals, authentication credentials, or deliberately
duplicate header fields that would impact request processing. misleading duplicate header fields that would impact request
processing.
A recipient MAY combine multiple header fields with the same field A recipient MAY combine multiple field lines with the same field name
name into one "field-name: field-value" pair, without changing the into one field line, without changing the semantics of the message,
semantics of the message, by appending each subsequent field value to by appending each subsequent field line value to the initial field
the combined field value in order, separated by a comma. line value in order, separated by a comma and optional whitespace.
For consistency, use comma SP.
The order in which header fields with the same field name are received is The order in which field lines with the same name are received is
therefore significant to the interpretation of the combined field value; a therefore significant to the interpretation of the field value; a
proxy MUST NOT change the order of these field values when proxy MUST NOT change the order of these field line values when
forwarding a message. forwarding a message.
A sender MUST NOT generate multiple header fields with the same field This means that, aside from the well-known exception noted below, a
name in a message unless either the entire field value for that sender MUST NOT generate multiple field lines with the same name in a
header field is defined as a comma-separated list [i.e., #(values)] message (whether in the headers or trailers), or append a field line
or the header field is a well-known exception (as noted below). when a field line of the same name already exists in the message,
unless that field's definition allows multiple field line values to
be recombined as a comma-separated list [i.e., at least one
alternative of the field's definition allows a comma-separated list,
such as an ABNF rule of #(values) defined in Section 4.5].
Note: In practice, the "Set-Cookie" header field ([RFC6265]) often Note: In practice, the "Set-Cookie" header field ([RFC6265]) often
appears multiple times in a response message and does not use the appears in a response message across multiple field and does not
list syntax, violating the above requirements on multiple header use the list syntax, violating the above requirements on multiple
fields with the same name. Since it cannot be combined into a field lines with the same field name. Since it cannot be combined
single field-value, recipients ought to handle "Set-Cookie" as a into a single field value, recipients ought to handle "Set-Cookie"
special case while processing header fields. (See Appendix A.2.3 as a special case while processing fields. (See Appendix A.2.3 of
of [Kri2001] for details.) [Kri2001] for details.)
3.2.5. Field Limits 4.2. Field Limits
HTTP does not place a predefined limit on the length of each header HTTP does not place a predefined limit on the length of each field
field or on the length of the header section as a whole, as described line, field value, or on the length of the header or trailer section
in Section 2.5. Various ad hoc limitations on individual header as a whole, as described in Section 3. Various ad hoc limitations on
field length are found in practice, often depending on the specific individual lengths are found in practice, often depending on the
field semantics. specific field's semantics.
A server that receives a request header field, or set of fields, A server that receives a request header field line, field value, or
larger than it wishes to process MUST respond with an appropriate 4xx set of fields larger than it wishes to process MUST respond with an
(Client Error) status code. Ignoring such header fields would appropriate 4xx (Client Error) status code. Ignoring such header
increase the server's vulnerability to request smuggling attacks fields would increase the server's vulnerability to request smuggling
(Section 9.5). attacks (Section 11.2 of [Messaging]).
A client MAY discard or truncate received header fields that are A client MAY discard or truncate received field lines that are larger
larger than the client wishes to process if the field semantics are than the client wishes to process if the field semantics are such
such that the dropped value(s) can be safely ignored without changing that the dropped value(s) can be safely ignored without changing the
the message framing or response semantics. message framing or response semantics.
4.1. Header Field Names 4.3. Field Names
The field-name token labels the corresponding field-value as having The field-name token labels the corresponding field value as having
the semantics defined by that header field. For example, the Date the semantics defined by that field. For example, the Date header
header field is defined in Section 7.1.1.2 of [RFC7231] as containing field is defined in Section 10.1.1.2 as containing the origination
the origination timestamp for the message in which it appears. timestamp for the message in which it appears.
field-name = token field-name = token
The requirements for header field names are defined in [BCP90]. Field names are case-insensitive and ought to be registered within
the "Hypertext Transfer Protocol (HTTP) Field Name Registry"; see
Section 4.3.2.
Authors of specifications defining new fields are advised to keep the Authors of specifications defining new fields are advised to choose a
name as short as practical and not to prefix the name with "X-" short but descriptive field name. Short names avoid needless data
unless the header field will never be used on the Internet. (The transmission; descriptive names avoid confusion and "squatting" on
"X-" prefix idiom has been extensively misused in practice; it was names that might have broader uses.
intended to only be used as a mechanism for avoiding name collisions
inside proprietary software or intranet processing, since the prefix To that end, limited-use fields (such as a header confined to a
would ensure that private names never collide with a newly registered single application or use case) are encouraged to use a name that
Internet name; see [BCP178] for further information). includes its name (or an abbreviation) as a prefix; for example, if
the Foo Application needs a Description field, it might use "Foo-
Desc"; "Description" is too generic, and "Foo-Description" is
needlessly long.
While the field-name syntax is defined to allow any token character,
in practice some implementations place limits on the characters they
accept in field-names. To be interoperable, new field names SHOULD
constrain themselves to alphanumeric characters, "-", and ".", and
SHOULD begin with an alphanumeric character.
Field names ought not be prefixed with "X-"; see [BCP178] for further
information.
[
Other prefixes are sometimes used in HTTP field names; for example, Other prefixes are sometimes used in HTTP field names; for example,
"Accept-" is used in many content negotiation headers. These "Accept-" is used in many content negotiation headers. These
prefixes are only an aid to recognizing the purpose of a field, and prefixes are only an aid to recognizing the purpose of a field, and
do not trigger automatic processing. do not trigger automatic processing.
]
4.3.1. Field Extensibility 4.3.1. Field Extensibility
Header fields are fully extensible: there is no limit on the There is no limit on the introduction of new field names, each
introduction of new field names, each presumably defining new presumably defining new semantics.
semantics, nor on the number of header fields used in a given
message. Existing fields are defined in each part of this
specification and in many other specifications outside this document
set.
New header fields can be defined such that, when they are understood New fields can be defined such that, when they are understood by a
by a recipient, they might override or enhance the interpretation of recipient, they might override or enhance the interpretation of
previously defined header fields, define preconditions on request previously defined fields, define preconditions on request
evaluation, or refine the meaning of responses. evaluation, or refine the meaning of responses.
A proxy MUST forward unrecognized header fields unless the field-name A proxy MUST forward unrecognized header fields unless the field name
is listed in the Connection header field (Section 6.1) or the proxy is listed in the Connection header field (Section 9.1 of [Messaging])
is specifically configured to block, or otherwise transform, such or the proxy is specifically configured to block, or otherwise
fields. Other recipients SHOULD ignore unrecognized header fields. transform, such fields. Other recipients SHOULD ignore unrecognized
These requirements allow HTTP's functionality to be enhanced without header and trailer fields. These requirements allow HTTP's
requiring prior update of deployed intermediaries. functionality to be enhanced without requiring prior update of
deployed intermediaries.
4.3.2. Field Name Registry 4.3.2. Field Name Registry
HTTP header fields are registered within the "Message Headers" The "Hypertext Transfer Protocol (HTTP) Field Name Registry" defines
registry located at the namespace for HTTP field names.
<http://www.iana.org/assignments/message-headers>, as defined by
[BCP90].
All defined header fields ought to be registered with IANA in the Any party can request registration of a HTTP field. See Section 4.7
"Message Headers" registry, as described in Section 8.3 of [RFC7231]. for considerations to take into account when creating a new HTTP
field.
The "Hypertext Transfer Protocol (HTTP) Field Name Registry" is
located at "https://www.iana.org/assignments/http-fields/".
Registration requests can be made by following the instructions
located there or by sending an email to the "ietf-http-wg@ietf.org"
mailing list.
Field names are registered on the advice of a Designated Expert
(appointed by the IESG or their delegate). Fields with the status
'permanent' are Specification Required (using terminology from
[RFC8126]).
Registration requests consist of at least the following information:
o Field name: The requested field name. It MUST conform to the
field-name syntax defined in Section 4.3, and SHOULD be restricted
to just letters, digits, hyphen ('-') and underscore ('_')
characters, with the first character being a letter.
o Status: "permanent" or "provisional"
o Specification document(s): Reference to the document that
specifies the field, preferably including a URI that can be used
to retrieve a copy of the document. An indication of the relevant
section(s) can also be included, but is not required.
The Expert(s) can define additional fields to be collected in the
registry, in consultation with the community.
Standards-defined names have a status of "permanent". Other names
can also be registered as permanent, if the Expert(s) find that they
are in use, in consultation with the community. Other names should
be registered as "provisional".
Provisional entries can be removed by the Expert(s) if -- in
consultation with the community -- the Expert(s) find that they are
not in use. The Experts can change a provisional entry's status to
permanent at any time.
Note that names can be registered by third parties (including the
Expert(s)), if the Expert(s) determines that an unregistered name is
widely deployed and not likely to be registered in a timely manner
otherwise.
4.4. Field Values 4.4. Field Values
New header field values typically have their syntax defined using HTTP field values typically have their syntax defined using ABNF
ABNF ([RFC5234]), using the extension defined in Section 7 of ([RFC5234]), using the extension defined in Section 4.5 as necessary,
[RFC7230] as necessary, and are usually constrained to the range of and are usually constrained to the range of US-ASCII characters.
US-ASCII characters. Header fields needing a greater range of Fields needing a greater range of characters can use an encoding such
characters can use an encoding such as the one defined in [RFC5987]. as the one defined in [RFC8187].
field-value = *( field-content / obs-fold ) field-value = *( field-content / obs-fold )
field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ] field-content = field-vchar
[ 1*( SP / HTAB / field-vchar ) field-vchar ]
field-vchar = VCHAR / obs-text field-vchar = VCHAR / obs-text
Historically, HTTP has allowed field content with text in the Historically, HTTP allowed field content with text in the ISO-8859-1
ISO-8859-1 charset [ISO-8859-1], supporting other charsets only charset [ISO-8859-1], supporting other charsets only through use of
through use of [RFC2047] encoding. In practice, most HTTP header [RFC2047] encoding. In practice, most HTTP field values use only a
field values use only a subset of the US-ASCII charset [USASCII]. subset of the US-ASCII charset [USASCII]. Newly defined fields
Newly defined header fields SHOULD limit their field values to SHOULD limit their values to US-ASCII octets. A recipient SHOULD
US-ASCII octets. A recipient SHOULD treat other octets in field treat other octets in field content (obs-text) as opaque data.
content (obs-text) as opaque data.
Leading and trailing whitespace in raw field values is removed upon Leading and trailing whitespace in raw field values is removed upon
field parsing (Section 3.2.4 of [RFC7230]). Field definitions where field parsing (Section 5.1 of [Messaging]). Field definitions where
leading or trailing whitespace in values is significant will have to leading or trailing whitespace in values is significant will have to
use a container syntax such as quoted-string (Section 3.2.6 of use a container syntax such as quoted-string (Section 4.4.1.2).
[RFC7230]).
Because commas (",") are used as a generic delimiter between Because commas (",") are used as a generic delimiter between members
field-values, they need to be treated with care if they are allowed of a list-based field value, they need to be treated with care if
in the field-value. Typically, components that might contain a comma they are allowed as data within those members. Typically, list
are protected with double-quotes using the quoted-string ABNF members that might contain a comma are enclosed in a quoted-string.
production.
For example, a textual date and a URI (either of which might contain For example, a textual date and a URI (either of which might contain
a comma) could be safely carried in field-values like these: a comma) could be safely carried in list-based field values like
these:
Example-URI-Field: "http://example.com/a.html,foo", Example-URI-Field: "http://example.com/a.html,foo",
"http://without-a-comma.example.com/" "http://without-a-comma.example.com/"
Example-Date-Field: "Sat, 04 May 1996", "Wed, 14 Sep 2005" Example-Date-Field: "Sat, 04 May 1996", "Wed, 14 Sep 2005"
Note that double-quote delimiters almost always are used with the Note that double-quote delimiters almost always are used with the
quoted-string production; using a different syntax inside quoted-string production; using a different syntax inside double-
double-quotes will likely cause unnecessary confusion. quotes will likely cause unnecessary confusion.
Many header fields use a format including (case-insensitively) named Many fields (such as Content-Type, defined in Section 6.2.1) use a
parameters (for instance, Content-Type, defined in Section 3.1.1.5). common syntax for parameters that allows both unquoted (token) and
Allowing both unquoted (token) and quoted (quoted-string) syntax for quoted (quoted-string) syntax for a parameter value
the parameter value enables recipients to use existing parser (Section 4.4.1.4). Use of common syntax allows recipients to reuse
components. When allowing both forms, the meaning of a parameter existing parser components. When allowing both forms, the meaning of
value ought to be independent of the syntax used for it (for an a parameter value ought to be the same whether it was received as a
example, see the notes on parameter handling for media types in token or a quoted string.
Section 3.1.1.1).
Historically, HTTP header field values could be extended over Historically, HTTP field values could be extended over multiple lines
multiple lines by preceding each extra line with at least one space by preceding each extra line with at least one space or horizontal
or horizontal tab (obs-fold). tab (obs-fold). [[CREF1: This document assumes that any such obs-
fold has been replaced with one or more SP octets prior to
interpreting the field value, as described in Section 5.2 of
[Messaging].]]
Consequently, this specification does not use ABNF rules This specification does not use ABNF rules to define each "Field
to define each "Field-Name: Field Value" pair, as was done in Name: Field Value" pair, as was done in earlier editions.
previous editions. Instead, this specification uses ABNF rules that Instead, this specification uses ABNF rules that are named
are named according to each registered field name, wherein the rule according to each registered field name, wherein the rule defines
defines the valid grammar for that field's corresponding field values the valid grammar for that field's corresponding field values
(i.e., after the field-value has been extracted from the header (i.e., after the field value has been extracted by a generic field
section by a generic field parser). parser).
3.2.6. Field Value Components 4.4.1. Common Field Value Components
Most HTTP header field values are defined using common syntax Many HTTP field values are defined using common syntax components,
components (token, quoted-string, and comment) separated by separated by whitespace or specific delimiting characters.
whitespace or specific delimiting characters. Delimiters are chosen Delimiters are chosen from the set of US-ASCII visual characters not
from the set of US-ASCII visual characters not allowed in a token allowed in a token (DQUOTE and "(),/:;<=>?@[\]{}").
(DQUOTE and "(),/:;<=>?@[\]{}").
4.4.1.1. Tokens
Tokens are short textual identifiers that do not include whitespace
or delimiters.
token = 1*tchar token = 1*tchar
tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*"
/ "+" / "-" / "." / "^" / "_" / "`" / "|" / "~" / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
/ DIGIT / ALPHA / DIGIT / ALPHA
; any VCHAR, except delimiters ; any VCHAR, except delimiters
4.4.1.2. Quoted Strings
A string of text is parsed as a single value if it is quoted using A string of text is parsed as a single value if it is quoted using
double-quote marks. double-quote marks.
quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE
qdtext = HTAB / SP /%x21 / %x23-5B / %x5D-7E / obs-text qdtext = HTAB / SP / %x21 / %x23-5B / %x5D-7E / obs-text
obs-text = %x80-FF obs-text = %x80-FF
The backslash octet ("\") can be used as a single-octet quoting The backslash octet ("\") can be used as a single-octet quoting
mechanism within quoted-string and comment constructs. Recipients mechanism within quoted-string and comment constructs. Recipients
that process the value of a quoted-string MUST handle a quoted-pair that process the value of a quoted-string MUST handle a quoted-pair
as if it were replaced by the octet following the backslash. as if it were replaced by the octet following the backslash.
quoted-pair = "\" ( HTAB / SP / VCHAR / obs-text ) quoted-pair = "\" ( HTAB / SP / VCHAR / obs-text )
A sender SHOULD NOT generate a quoted-pair in a quoted-string except A sender SHOULD NOT generate a quoted-pair in a quoted-string except
where necessary to quote DQUOTE and backslash octets occurring within where necessary to quote DQUOTE and backslash octets occurring within
that string. A sender SHOULD NOT generate a quoted-pair in a comment that string. A sender SHOULD NOT generate a quoted-pair in a comment
except where necessary to quote parentheses ["(" and ")"] and except where necessary to quote parentheses ["(" and ")"] and
backslash octets occurring within that comment. backslash octets occurring within that comment.
Comments can be included in some HTTP header fields by surrounding 4.4.1.3. Comments
the comment text with parentheses. Comments are only allowed in
fields containing "comment" as part of their field value definition. Comments can be included in some HTTP fields by surrounding the
comment text with parentheses. Comments are only allowed in fields
containing "comment" as part of their field value definition.
comment = "(" *( ctext / quoted-pair / comment ) ")" comment = "(" *( ctext / quoted-pair / comment ) ")"
ctext = HTAB / SP / %x21-27 / %x2A-5B / %x5D-7E / obs-text ctext = HTAB / SP / %x21-27 / %x2A-5B / %x5D-7E / obs-text
parameter = token "=" ( token / quoted-string ) 4.4.1.4. Parameters
The parameter name tokens are case-insensitive. A parameter is a name=value pair that is often defined within field
Parameter values might or might not be case-sensitive, depending on values as a common syntax for appending auxiliary information to an
the semantics of the parameter name. item. Each parameter is usually delimited by an immediately
preceding semicolon.
parameter = parameter-name "=" parameter-value
parameter-name = token
parameter-value = ( token / quoted-string )
Parameter names are case-insensitive. Parameter values might or
might not be case-sensitive, depending on the semantics of the
parameter name. Examples of parameters and some equivalent forms can
be seen in media types (Section 6.1.1) and the Accept header field
(Section 8.4.2).
A parameter value that matches the token production can be A parameter value that matches the token production can be
transmitted either as a token or within a quoted-string. The quoted transmitted either as a token or within a quoted-string. The quoted
and unquoted values are equivalent. and unquoted values are equivalent.
Note: Unlike some similar constructs in other header fields, media Note: Parameters do not allow whitespace (not even "bad"
type parameters do not allow whitespace (even "bad" whitespace) whitespace) around the "=" character.
around the "=" character.
7. ABNF List Extension: #rule 4.5. ABNF List Extension: #rule
A #rule extension to the ABNF rules of [RFC5234] is used to improve A #rule extension to the ABNF rules of [RFC5234] is used to improve
readability in the definitions of some header field values. readability in the definitions of some list-based field values.
A construct "#" is defined, similar to "*", for defining A construct "#" is defined, similar to "*", for defining comma-
comma-delimited lists of elements. The full form is "<n>#<m>element" delimited lists of elements. The full form is "<n>#<m>element"
indicating at least <n> and at most <m> elements, each separated by a indicating at least <n> and at most <m> elements, each separated by a
single comma (",") and optional whitespace (OWS). single comma (",") and optional whitespace (OWS).
4.5.1. Sender Requirements
In any production that uses the list construct, a sender MUST NOT In any production that uses the list construct, a sender MUST NOT
generate empty list elements. In other words, a sender MUST generate generate empty list elements. In other words, a sender MUST generate
lists that satisfy the following syntax: lists that satisfy the following syntax:
1#element => element *( OWS "," OWS element ) 1#element => element *( OWS "," OWS element )
and: and:
#element => [ 1#element ] #element => [ 1#element ]
and for n >= 1 and m > 1: and for n >= 1 and m > 1:
<n>#<m>element => element <n-1>*<m-1>( OWS "," OWS element ) <n>#<m>element => element <n-1>*<m-1>( OWS "," OWS element )
4.5.2. [Recipient Requirements] 4.5.2. Recipient Requirements
For compatibility with legacy list rules, a recipient MUST parse and Empty elements do not contribute to the count of elements present. A
ignore a reasonable number of empty list elements: enough to handle recipient MUST parse and ignore a reasonable number of empty list
common mistakes by senders that merge values, but not so much that elements: enough to handle common mistakes by senders that merge
they could be used as a denial-of-service mechanism. In other words, values, but not so much that they could be used as a denial-of-
a recipient MUST accept lists that satisfy the following syntax: service mechanism. In other words, a recipient MUST accept lists
that satisfy the following syntax:
#element => [ ( "," / element ) *( OWS "," [ OWS element ] ) ] #element => [ element ] *( OWS "," OWS [ element ] )
1#element => *( "," OWS ) element *( OWS "," [ OWS element ] ) Note that because of the potential presence of empty list elements,
the RFC 5234 ABNF cannot enforce the cardinality of list elements,
and consequently all cases are mapped is if there was no cardinality
specified.
Empty elements do not contribute to the count of elements present.
For example, given these ABNF productions: For example, given these ABNF productions:
example-list = 1#example-list-elmt example-list = 1#example-list-elmt
example-list-elmt = token ; see Section 3.2.6 example-list-elmt = token ; see Section 4.4.1.1
Then the following are valid values for example-list (not including Then the following are valid values for example-list (not including
the double quotes, which are present for delimitation only): the double quotes, which are present for delimitation only):
"foo,bar" "foo,bar"
"foo ,bar," "foo ,bar,"
"foo , ,bar,charlie " "foo , ,bar,charlie"
In contrast, the following values would be invalid, since at least In contrast, the following values would be invalid, since at least
one non-empty element is required by the example-list production: one non-empty element is required by the example-list production:
"" ""
"," ","
", ," ", ,"
Appendix B shows the collected ABNF for recipients after the list Appendix A shows the collected ABNF for recipients after the list
constructs have been expanded. constructs have been expanded.
4.6. [Trailer Fields] 4.6. Trailer Fields
4.6.1. Purpose
A trailer allows the sender to include additional fields at the end In some HTTP versions, additional metadata can be sent after the
of a chunked message in order to supply metadata that might be initial header section has been completed (during or after
dynamically generated while the message body is sent, such as a transmission of the payload body), such as a message integrity check,
message integrity check, digital signature, or post-processing digital signature, or post-processing status. For example, the
status. The trailer fields are identical to header fields, except chunked coding in HTTP/1.1 allows a trailer section after the payload
they are sent in a chunked trailer instead of the message's header body (Section 7.1.2 of [Messaging]) which can contain trailer fields:
section. field names and values that share the same syntax and namespace as
header fields but that are received after the header section.
Trailer fields ought to be processed and stored separately from the
fields in the header section to avoid contradicting message semantics
known at the time the header section was complete. The presence or
absence of certain header fields might impact choices made for the
routing or processing of the message as a whole before the trailers
are received; those choices cannot be unmade by the later discovery
of trailer fields.
4.6.2. Limitations 4.6.2. Limitations
A sender MUST NOT generate a trailer that contains a field necessary Many fields cannot be processed outside the header section because
for message framing (e.g., Transfer-Encoding and Content-Length), their evaluation is necessary prior to receiving the message body,
routing (e.g., Host), request modifiers (e.g., controls and such as those that describe message framing, routing, authentication,
conditionals in Section 5 of [RFC7231]), authentication (e.g., see request modifiers, response controls, or payload format. A sender
[RFC7235] and [RFC6265]), response control data (e.g., see Section MUST NOT generate a trailer field unless the sender knows the
7.1 of [RFC7231]), or determining how to process the payload (e.g., corresponding header field name's definition permits the field to be
Content-Encoding, Content-Type, Content-Range, and Trailer). sent in trailers.
When a chunked message containing a non-empty trailer is received, Trailer fields can be difficult to process by intermediaries that
the recipient MAY process the fields (aside from those forbidden forward messages from one protocol version to another. If the entire
above) as if they were appended to the message's header section. A message can be buffered in transit, some intermediaries could merge
recipient MUST ignore (or consider as an error) any fields that are trailer fields into the header section (as appropriate) before it is
forbidden to be sent in a trailer, since processing them as if they forwarded. However, in most cases, the trailers are simply
were present in the header section might bypass external security discarded. A recipient MUST NOT merge a trailer field into a header
filters. section unless the recipient understands the corresponding header
field definition and that definition explicitly permits and defines
how trailer field values can be safely merged.
Unless the request includes a TE header field indicating "trailers" A client can send a TE header field indicating "trailers" is
is acceptable, as described in Section 4.3, a server SHOULD NOT acceptable, as described in Section 7.4 of [Messaging], to inform the
generate trailer fields that it believes are necessary for the user server that it will not discard trailer fields.
agent to receive. Without a TE containing "trailers", the server
ought to assume that the trailer fields might be silently discarded Because of the potential for trailer fields to be discarded in
along the path to the user agent. This requirement allows transit, a server SHOULD NOT generate trailer fields that it believes
intermediaries to forward a de-chunked message to an HTTP/1.0 are necessary for the user agent to receive.
recipient without buffering the entire response.
4.6.3. Trailer 4.6.3. Trailer
The "Trailer" header field provides a list of field names that the
sender anticipates sending as trailer fields within that message.
This allows a recipient to prepare for receipt of the indicated
metadata before it starts processing the body.
Trailer = 1#field-name Trailer = 1#field-name
When a message includes a message body encoded with the chunked For example, a sender might indicate that a message integrity check
transfer coding and the sender desires to send metadata in the form will be computed as the payload is being streamed and provide the
of trailer fields at the end of the message, the sender SHOULD final signature as a trailer field. This allows a recipient to
generate a Trailer header field before the message body to indicate perform the same check on the fly as the payload data is received.
which fields will be present in the trailers. This allows the
recipient to prepare for receipt of that metadata before it starts A sender that intends to generate one or more trailer fields in a
processing the body, which is useful if the message is being streamed message SHOULD generate a Trailer header field in the header section
and the recipient wishes to confirm an integrity check on the fly. of that message to indicate which fields might be present in the
trailers.
4.7. Considerations for New HTTP Fields 4.7. Considerations for New HTTP Fields
Authors of specifications defining new header fields are advised to See Section 4.3 for a general requirements for field names, and
consider documenting: Section 4.4 for a discussion of field values.
Authors of specifications defining new fields are advised to consider
documenting:
o Whether the field is a single value or whether it can be a list o Whether the field is a single value or whether it can be a list
(delimited by commas; see Section 3.2 of [RFC7230]). (delimited by commas; see Section 4.4).
If it does not use the list syntax, document how to treat messages If it is not a list, document how to treat messages where the
where the field occurs multiple times (a sensible default would be field occurs multiple times (a sensible default would be to ignore
to ignore the field, but this might not always be the right the field, but this might not always be the right choice).
choice).
Note that intermediaries and software libraries might combine Note that intermediaries and software libraries might combine
multiple header field instances into a single one, despite the multiple field instances into a single one, despite the field's
field's definition not allowing the list syntax. A robust format definition not allowing the list syntax. A robust format enables
enables recipients to discover these situations (good example: recipients to discover these situations (good example: "Content-
"Content-Type", as the comma can only appear inside quoted Type", as the comma can only appear inside quoted strings; bad
strings; bad example: "Location", as a comma can occur inside a example: "Location", as a comma can occur inside a URI).
URI).
o Under what conditions the header field can be used; e.g., only in o Under what conditions the field can be used; e.g., only in
responses or requests, in all messages, only on responses to a responses or requests, in all messages, only on responses to a
particular request method, etc. particular request method, etc.
o Whether the field should be stored by origin servers that o Whether the field should be stored by origin servers that
understand it upon a PUT request. understand it upon a PUT request.
o Whether the field semantics are further refined by the context, o Whether the field semantics are further refined by the context,
such as by existing request methods or status codes. such as by existing request methods or status codes.
o Whether it is appropriate to list the field-name in the Connection o Whether it is appropriate to list the field name in the Connection
header field (i.e., if the header field is to be hop-by-hop; see header field (i.e., if the field is to be hop-by-hop; see
Section 6.1 of [RFC7230]). Section 9.1 of [Messaging]).
o Under what conditions intermediaries are allowed to insert, o Under what conditions intermediaries are allowed to insert,
delete, or modify the field's value. delete, or modify the field's value.
o Whether it is appropriate to list the field-name in a Vary o Whether it is appropriate to list the field name in a Vary
response header field (e.g., when the request header field is used response header field (e.g., when the request header field is used
by an origin server's content selection algorithm; see by an origin server's content selection algorithm; see
Section 7.1.4). Section 10.1.4).
o Whether the header field is useful or allowable in trailers (see o Whether the field is allowable in trailers (see Section 4.6).
Section 4.1 of [RFC7230]).
o Whether the header field ought to be preserved across redirects. o Whether the field ought to be preserved across redirects.
o Whether it introduces any additional security considerations, such o Whether it introduces any additional security considerations, such
as disclosure of privacy-related data. as disclosure of privacy-related data.
4.8. Fields Defined In This Document 4.8. Fields Defined In This Document
The "Message Headers" registry has been updated with the following The following fields are defined by this document:
permanent registrations:
+-------------------+----------+----------+-----------------+ +---------------------------+------------+-------------------+
| Header Field Name | Protocol | Status | Reference | | Field Name | Status | Reference |
+-------------------+----------+----------+-----------------+ +---------------------------+------------+-------------------+
| Accept | http | standard | Section 5.3.2 | | Accept | standard | Section 8.4.2 |
| Accept-Charset | http | standard | Section 5.3.3 | | Accept-Charset | deprecated | Section 8.4.3 |
| Accept-Encoding | http | standard | Section 5.3.4 | | Accept-Encoding | standard | Section 8.4.4 |
| Accept-Language | http | standard | Section 5.3.5 | | Accept-Language | standard | Section 8.4.5 |
| Accept-Ranges | http | standard | Section 2.3 | | Accept-Ranges | standard | Section 10.4.1 |
| Allow | http | standard | Section 7.4.1 | | Allow | standard | Section 10.4.2 |
| Authorization | http | standard | Section 4.2 | | Authentication-Info | standard | Section 10.3.3 |
| Content-Encoding | http | standard | Section 3.1.2.2 | | Authorization | standard | Section 8.5.3 |
| Content-Language | http | standard | Section 3.1.3.2 | | Content-Encoding | standard | Section 6.2.2 |
| Content-Length | http | standard | Section 3.3.2 | | Content-Language | standard | Section 6.2.3 |
| Content-Location | http | standard | Section 3.1.4.2 | | Content-Length | standard | Section 6.2.4 |
| Content-Range | http | standard | Section 4.2 | | Content-Location | standard | Section 6.2.5 |
| Content-Type | http | standard | Section 3.1.1.5 | | Content-Range | standard | Section 6.3.4 |
| Date | http | standard | Section 7.1.1.2 | | Content-Type | standard | Section 6.2.1 |
| ETag | http | standard | Section 2.3 | | Date | standard | Section 10.1.1.2 |
| Expect | http | standard | Section 5.1.1 | | ETag | standard | Section 10.2.3 |
| From | http | standard | Section 5.5.1 | | Expect | standard | Section 8.1.1 |
| Host | http | standard | Section 5.4 | | From | standard | Section 8.6.1 |
| If-Match | http | standard | Section 3.1 | | Host | standard | Section 5.6 |
| If-Modified-Since | http | standard | Section 3.3 | | If-Match | standard | Section 8.2.3 |
| If-None-Match | http | standard | Section 3.2 | | If-Modified-Since | standard | Section 8.2.5 |
| If-Range | http | standard | Section 3.2 | | If-None-Match | standard | Section 8.2.4 |
| If-Unmodified-Since | http | standard | Section 3.4 | | If-Range | standard | Section 8.2.7 |
| Last-Modified | http | standard | Section 2.2 | | If-Unmodified-Since | standard | Section 8.2.6 |
| Location | http | standard | Section 7.1.2 | | Last-Modified | standard | Section 10.2.2 |
| Max-Forwards | http | standard | Section 5.1.2 | | Location | standard | Section 10.1.2 |
| Proxy-Authenticate | http | standard | Section 4.3 | | Max-Forwards | standard | Section 8.1.2 |
| Proxy-Authorization | http | standard | Section 4.4 | | Proxy-Authenticate | standard | Section 10.3.2 |
| Range | http | standard | Section 3.1 | | Proxy-Authentication-Info | standard | Section 10.3.4 |
| Referer | http | standard | Section 5.5.2 | | Proxy-Authorization | standard | Section 8.5.4 |
| Retry-After | http | standard | Section 7.1.3 | | Range | standard | Section 8.3 |
| Server | http | standard | Section 7.4.2 | | Referer | standard | Section 8.6.2 |
| Trailer | http | standard | Section 4.4 | | Retry-After | standard | Section 10.1.3 |
| User-Agent | http | standard | Section 5.5.3 | | Server | standard | Section 10.4.3 |
| Vary | http | standard | Section 7.1.4 | | Trailer | standard | Section 4.6.3 |
| Via | http | standard | Section 5.7.1 | | User-Agent | standard | Section 8.6.3 |
| WWW-Authenticate | http | standard | Section 4.1 | | Vary | standard | Section 10.1.4 |
+-------------------+----------+----------+-----------------+ | Via | standard | Section 5.7.1 |
| WWW-Authenticate | standard | Section 10.3.1 |
+---------------------------+------------+-------------------+
Table 1
5. Message Routing 5. Message Routing
HTTP request message routing is determined by each client based on HTTP request message routing is determined by each client based on
the target resource, the client's proxy configuration, and the target resource, the client's proxy configuration, and
establishment or reuse of an inbound connection. The corresponding establishment or reuse of an inbound connection. The corresponding
response routing follows the same connection chain back to the response routing follows the same connection chain back to the
client. client.
5.1. Identifying a Target Resource 5.1. Identifying a Target Resource
HTTP is used in a wide variety of applications, ranging from HTTP is used in a wide variety of applications, ranging from general-
general-purpose computers to home appliances. In some cases, purpose computers to home appliances. In some cases, communication
communication options are hard-coded in a client's configuration. options are hard-coded in a client's configuration. However, most
However, most HTTP clients rely on the same resource identification HTTP clients rely on the same resource identification mechanism and
mechanism and configuration techniques as general-purpose Web configuration techniques as general-purpose Web browsers.
browsers.
HTTP communication is initiated by a user agent for some purpose. HTTP communication is initiated by a user agent for some purpose.
The purpose is a combination of request semantics, which are defined The purpose is a combination of request semantics and a target
in [RFC7231], and a target resource upon which to apply those resource upon which to apply those semantics. A URI reference
semantics. A URI reference (Section 2.7) is typically used as an (Section 2.4) is typically used as an identifier for the "target
identifier for the "target resource", which a user agent would resource", which a user agent would resolve to its absolute form in
resolve to its absolute form in order to obtain the "target URI". order to obtain the "target URI". The target URI excludes the
The target URI excludes the reference's fragment component, if any, reference's fragment component, if any, since fragment identifiers
since fragment identifiers are reserved for client-side processing are reserved for client-side processing ([RFC3986], Section 3.5).
([RFC3986], Section 3.5).
5.2. Determining Origin
The "origin" for a given URI is the triple of scheme, host, and port
after normalizing the scheme and host to lowercase and normalizing
the port to remove any leading zeros. If port is elided from the
URI, the default port for that scheme is used. For example, the URI
https://Example.Com/happy.js
would have the origin
{ "https", "example.com", "443" }
which can also be described as the normalized URI prefix with port
always present:
https://example.com:443
Each origin defines its own namespace and controls how identifiers
within that namespace are mapped to resources. In turn, how the
origin responds to valid requests, consistently over time, determines
the semantics that users will associate with a URI, and the
usefulness of those semantics is what ultimately transforms these
mechanisms into a "resource" for users to reference and access in the
future.
Two origins are distinct if they differ in scheme, host, or port.
Even when it can be verified that the same entity controls two
distinct origins, the two namespaces under those origins are distinct
unless explicitly aliased by a server authoritative for that origin.
Origin is also used within HTML and related Web protocols, beyond the
scope of this document, as described in [RFC6454].
5.3. Routing Inbound 5.3. Routing Inbound
Once the target URI is determined, a client needs to decide whether a Once the target URI and its origin are determined, a client decides
network request is necessary to accomplish the desired semantics and, whether a network request is necessary to accomplish the desired
if so, where that request is to be directed. semantics and, if so, where that request is to be directed.
If the client has a cache [RFC7234] and the request can be satisfied If the client has a cache [Caching] and the request can be satisfied
by it, then the request is usually directed there first. by it, then the request is usually directed there first.
If the request is not satisfied by a cache, then a typical client If the request is not satisfied by a cache, then a typical client
will check its configuration to determine whether a proxy is to be will check its configuration to determine whether a proxy is to be
used to satisfy the request. Proxy configuration is implementation- used to satisfy the request. Proxy configuration is implementation-
dependent, but is often based on URI prefix matching, selective dependent, but is often based on URI prefix matching, selective
authority matching, or both, and the proxy itself is usually authority matching, or both, and the proxy itself is usually
identified by an "http" or "https" URI. If a proxy is applicable, identified by an "http" or "https" URI. If a proxy is applicable,
the client connects inbound by establishing (or reusing) a connection the client connects inbound by establishing (or reusing) a connection
to that proxy. to that proxy.
If no proxy is applicable, a typical client will invoke a handler If no proxy is applicable, a typical client will invoke a handler
routine, usually specific to the target URI's scheme, to connect routine, usually specific to the target URI's scheme, to connect
directly to an authority for the target resource. How that is directly to an origin for the target resource. How that is
accomplished is dependent on the target URI scheme and defined by its accomplished is dependent on the target URI scheme and defined by its
associated specification, similar to how this specification defines associated specification, similar to how this specification defines
origin server access for resolution of the "http" (Section 2.7.1) and origin server access for resolution of the "http" (Section 2.5.1) and
"https" (Section 2.7.2) schemes. "https" (Section 2.5.2) schemes.
HTTP requirements regarding connection management are defined in HTTP requirements regarding connection management are defined in
Section 6. Section 9 of [Messaging].
X.X. [Direct Authoritative Access] 5.4. Direct Authoritative Access
5.4.1. http origins 5.4.1. http origins
Although HTTP is independent of the transport protocol, the "http" Although HTTP is independent of the transport protocol, the "http"
scheme is specific to TCP-based services because the name delegation scheme is specific to associating authority with whomever controls
process depends on TCP for establishing authority. An HTTP service the origin server listening for TCP connections on the indicated port
based on some other underlying connection protocol would presumably of whatever host is identified within the authority component. This
be identified using a different URI scheme, just as the "https" is a very weak sense of authority because it depends on both client-
scheme (below) is used for resources that require an end-to-end specific name resolution mechanisms and communication that might not
secured connection. Other protocols might also be used to provide be secured from man-in-the-middle attacks. Nevertheless, it is a
access to "http" identified resources -- it is only the authoritative sufficient minimum for binding "http" identifiers to an origin server
interface that is specific to TCP. for consistent resolution within a trusted environment.
If the host identifier is provided as an IP address, the origin If the host identifier is provided as an IP address, the origin
server is the listener (if any) on the indicated TCP port at that IP server is the listener (if any) on the indicated TCP port at that IP
address. If host is a registered name, the registered name is an address. If host is a registered name, the registered name is an
indirect identifier for use with a name resolution service, such as indirect identifier for use with a name resolution service, such as
DNS, to find an address for that origin server. DNS, to find an address for an appropriate origin server.
When an "http" URI is used within a context that calls for access to When an "http" URI is used within a context that calls for access to
the indicated resource, a client MAY attempt access by resolving the the indicated resource, a client MAY attempt access by resolving the
host to an IP address, establishing a TCP connection to that address host identifier to an IP address, establishing a TCP connection to
on the indicated port, and sending an HTTP request message that address on the indicated port, and sending an HTTP request
(Section 3) containing the URI's identifying data (Section 5) to the message to the server containing the URI's identifying data
server. If the server responds to that request with a non-interim (Section 2 of [Messaging]).
HTTP response message, as described in Section 6 of [RFC7231], then
that response is considered an authoritative answer to the client's
request.
See Section 9.1 for security considerations related to establishing If the server responds to such a request with a non-interim HTTP
response message, as described in Section 9, then that response is
considered an authoritative answer to the client's request.
Note, however, that the above is not the only means for obtaining an
authoritative response, nor does it imply that an authoritative
response is always necessary (see [Caching]). For example, the Alt-
Svc header field [RFC7838] allows an origin server to identify other
services that are also authoritative for that origin. Access to
"http" identified resources might also be provided by protocols
outside the scope of this document.
See Section 11.1 for security considerations related to establishing
authority. authority.
5.4.2. https origins 5.4.2. https origins
[new section] The "https" scheme associates authority based on the ability of a
server to use a private key associated with a certificate that the
client considers to be trustworthy for the identified host. If a
server presents a certificate that verifiably applies to the host,
along with proof that it controls the corresponding private key, then
a client will accept a secured connection to that server as being
authoritative for all origins with the same scheme and host.
A client is therefore relying upon a chain of trust, conveyed from
some trust anchor (which is usually prearranged or configured),
through a chain of certificates (e.g., [RFC5280]) to a final
certificate that binds a private key to the host name of the origin.
The handshake and certificate validation in Section 5.4.3 describe
how that final certificate can be used to initiate a secured
connection.
Note that the "https" scheme does not rely on TCP and the connected
port number for associating authority, since both are outside the
secured communication and thus cannot be trusted as definitive.
Hence, the HTTP communication might take place over any channel that
has been secured, as defined in Section 2.5.2, including protocols
that don't use TCP. It is the origin's responsibility to ensure that
any services provided with control over its certificate's private key
are equally responsible for managing the corresponding "https"
namespaces, or at least prepared to reject requests that appear to
have been misdirected. Regardless, the origin's host and port value
are passed within each HTTP request, identifying the target resource
and distinguishing it from other namespaces that might be controlled
by the same server.
In HTTP/1.1 and earlier, the only URIs for which a client will
attribute authority to a server are those for which a TLS connection
was specifically established toward the origin's host. Only the
characteristics of the connection establishment and certificate are
used. For a host that is a domain name, the client MUST include that
name in the TLS server_name extension (if used) and MUST verify that
the name also appears as either the CN field of the certificate
subject or as a dNSName in the subjectAltName field of the
certificate (see [RFC6125]). For a host that is an IP address, the
client MUST verify that the address appears in the subjectAltName of
the certificate.
In HTTP/2, a client will associate authority to all names that are
present in the certificate. However, a client will only do that if
it concludes that it could open a connection to the origin for that
URI. In practice, a client will make a DNS query and see that it
contains the same server IP address. A server sending the ORIGIN
frame removes this restriction [RFC8336].
In addition to the client's verification, an origin server is
responsible for verifying that requests it receives over a connection
correspond to resources for which it actually wants to be the origin.
If a network attacker causes connections for port N to be received at
port Q, checking the effective request URI is necessary to ensure
that the attacker can't cause "https://example.com:N/foo" to be
replaced by "https://example.com:Q/foo" without consent. Likewise, a
server might be unwilling to serve as the origin for some hosts even
when they have the authority to do so.
When an "https" URI is used within a context that calls for access to
the indicated resource, a client MAY attempt access by resolving the
host identifier to an IP address, establishing a TCP connection to
that address on the indicated port, securing the connection end-to-
end by successfully initiating TLS over TCP with confidentiality and
integrity protection, and sending an HTTP request message to the
server over that secured connection containing the URI's identifying
data (Section 2 of [Messaging]).
If the server responds to such a request with a non-interim HTTP
response message, as described in Section 9, then that response is
considered an authoritative answer to the client's request.
Note, however, that the above is not the only means for obtaining an
authoritative response, nor does it imply that an authoritative
response is always necessary (see [Caching]).
5.4.3. Initiating HTTP Over TLS 5.4.3. Initiating HTTP Over TLS
Conceptually, HTTP/TLS is very simple. Simply use HTTP over TLS Conceptually, HTTP/TLS is very simple. Simply use HTTP over TLS
precisely as you would use HTTP over TCP. precisely as you would use HTTP over TCP.
2.1. Connection Initiation
The agent acting as the HTTP client should also act as the TLS The agent acting as the HTTP client should also act as the TLS
client. It should initiate a connection to the server on the client. It should initiate a connection to the server on the
appropriate port and then send the TLS ClientHello to begin the TLS appropriate port and then send the TLS ClientHello to begin the TLS
handshake. When the TLS handshake has finished. The client may then handshake. When the TLS handshake has finished. The client may then
initiate the first HTTP request. All HTTP data MUST be sent as TLS initiate the first HTTP request. All HTTP data MUST be sent as TLS
"application data". Normal HTTP behavior, including retained "application data". Normal HTTP behavior, including retained
connections should be followed. connections should be followed.
3.1. Server Identity 5.4.3.1. Identifying HTTPS Servers
In general, HTTP/TLS requests are generated by dereferencing a URI. In general, HTTP/TLS requests are generated by dereferencing a URI.
As a consequence, the hostname for the server is known to the client. As a consequence, the hostname for the server is known to the client.
If the hostname is available, the client MUST check it against the If the hostname is available, the client MUST check it against the
server's identity as presented in the server's Certificate message, server's identity as presented in the server's Certificate message,
in order to prevent man-in-the-middle attacks. in order to prevent man-in-the-middle attacks.
If the client has external information as to the expected identity of If the client has external information as to the expected identity of
the server, the hostname check MAY be omitted. (For instance, a the server, the hostname check MAY be omitted. (For instance, a
client may be connecting to a machine whose address and hostname are client may be connecting to a machine whose address and hostname are
dynamic but the client knows the certificate that the server will dynamic but the client knows the certificate that the server will
present.) In such cases, it is important to narrow the scope of present.) In such cases, it is important to narrow the scope of
acceptable certificates as much as possible in order to prevent man acceptable certificates as much as possible in order to prevent man
in the middle attacks. In special cases, it may be appropriate for in the middle attacks. In special cases, it may be appropriate for
the client to simply ignore the server's identity, but it must be the client to simply ignore the server's identity, but it must be
understood that this leaves the connection open to active attack. understood that this leaves the connection open to active attack.
If a subjectAltName extension of type dNSName is present, that MUST If a subjectAltName extension of type dNSName is present, that MUST
be used as the identity. Otherwise, the (most specific) Common Name be used as the identity. Otherwise, the (most specific) Common Name
field in the Subject field of the certificate MUST be used. Although field in the Subject field of the certificate MUST be used. Although
the use of the Common Name is existing practice, it is deprecated and the use of the Common Name is existing practice, it is deprecated and
Certification Authorities are encouraged to use the dNSName instead. Certification Authorities are encouraged to use the dNSName instead.
Matching is performed using the matching rules specified by Matching is performed using the matching rules specified by
[RFC2459]. If more than one identity of a given type is present in [RFC5280]. If more than one identity of a given type is present in
the certificate (e.g., more than one dNSName name, a match in any one the certificate (e.g., more than one dNSName name, a match in any one
of the set is considered acceptable.) Names may contain the wildcard of the set is considered acceptable.) Names may contain the wildcard
character * which is considered to match any single domain name character * which is considered to match any single domain name
component or component fragment. E.g., *.a.com matches foo.a.com but component or component fragment. E.g., *.a.com matches foo.a.com but
not bar.foo.a.com. f*.com matches foo.com but not bar.com. not bar.foo.a.com. f*.com matches foo.com but not bar.com.
In some cases, the URI is specified as an IP address rather than a In some cases, the URI is specified as an IP address rather than a
hostname. In this case, the iPAddress subjectAltName must be present hostname. In this case, the iPAddress subjectAltName must be present
in the certificate and must exactly match the IP in the URI. in the certificate and must exactly match the IP in the URI.
If the hostname does not match the identity in the certificate, user If the hostname does not match the identity in the certificate, user
oriented clients MUST either notify the user (clients MAY give the oriented clients MUST either notify the user (clients MAY give the
user the opportunity to continue with the connection in any case) or user the opportunity to continue with the connection in any case) or
terminate the connection with a bad certificate error. Automated terminate the connection with a bad certificate error. Automated
clients MUST log the error to an appropriate audit log (if available) clients MUST log the error to an appropriate audit log (if available)
and SHOULD terminate the connection (with a bad certificate error). and SHOULD terminate the connection (with a bad certificate error).
Automated clients MAY provide a configuration setting that disables Automated clients MAY provide a configuration setting that disables
this check, but MUST provide a setting which enables it. this check, but MUST provide a setting which enables it.
Note that in many cases the URI itself comes from an untrusted Note that in many cases the URI itself comes from an untrusted
source. The above-described check provides no protection against source. The above-described check provides no protection against
attacks where this source is compromised. For example, if the URI was attacks where this source is compromised. For example, if the URI
obtained by clicking on an HTML page which was itself obtained was obtained by clicking on an HTML page which was itself obtained
without using HTTP/TLS, a man in the middle could have replaced the without using HTTP/TLS, a man in the middle could have replaced the
URI. In order to prevent this form of attack, users should carefully URI. In order to prevent this form of attack, users should carefully
examine the certificate presented by the server to determine if it examine the certificate presented by the server to determine if it
meets their expectations. meets their expectations.
3.2. Client Identity 5.4.3.2. Identifying HTTPS Clients
Typically, the server has no external knowledge of what the client's Typically, the server has no external knowledge of what the client's
identity ought to be and so checks (other than that the client has a identity ought to be and so checks (other than that the client has a
certificate chain rooted in an appropriate CA) are not possible. If a certificate chain rooted in an appropriate CA) are not possible. If
server has such knowledge (typically from some source external to a server has such knowledge (typically from some source external to
HTTP or TLS) it SHOULD check the identity as described above. HTTP or TLS) it SHOULD check the identity as described above.
5.5. Effective Request URI 5.5. Effective Request URI
Once an inbound connection is obtained, the client sends an HTTP Once an inbound connection is obtained, the client sends an HTTP
request message (Section 3) with a request-target derived from the request message (Section 2 of [Messaging]).
target URI.
Since the request-target often contains only part of the user agent's Depending on the nature of the request, the client's target URI might
target URI, a server reconstructs the intended target as an be split into components and transmitted (or implied) within various
"effective request URI" to properly service the request. This parts of a request message. These parts are recombined by each
reconstruction involves both the server's local configuration and recipient, in accordance with their local configuration and incoming
information communicated in the request-target, Host header field, connection context, to form an "effective request URI" for
and connection context. identifying the intended target resource with respect to that server.
Section 3.3 of [Messaging] defines how a server determines the
effective request URI for an HTTP/1.1 request.
For a user agent, the effective request URI is the target URI. For a user agent, the effective request URI is the target URI.
Once the effective request URI has been constructed, an origin server Once the effective request URI has been constructed, an origin server
needs to decide whether or not to provide service for that URI via needs to decide whether or not to provide service for that URI via
the connection in which the request was received. For example, the the connection in which the request was received. For example, the
request might have been misdirected, deliberately or accidentally, request might have been misdirected, deliberately or accidentally,
such that the information within a received request-target or Host such that the information within a received request-target or Host
header field differs from the host or port upon which the connection header field differs from the host or port upon which the connection
has been made. If the connection is from a trusted gateway, that has been made. If the connection is from a trusted gateway, that
inconsistency might be expected; otherwise, it might indicate an inconsistency might be expected; otherwise, it might indicate an
attempt to bypass security filters, trick the server into delivering attempt to bypass security filters, trick the server into delivering
non-public content, or poison a cache. See Section 9 for security non-public content, or poison a cache. See Section 11 for security
considerations regarding message routing. considerations regarding message routing.
5.4. Host 5.6. Host
The "Host" header field in a request provides the host and port The "Host" header field in a request provides the host and port
information from the target URI, enabling the origin server to information from the target URI, enabling the origin server to
distinguish among resources while servicing requests for multiple distinguish among resources while servicing requests for multiple
host names on a single IP address. host names on a single IP address.
Host = uri-host [ ":" port ] ; Section 2.7.1 Host = uri-host [ ":" port ] ; Section 2.4
A client MUST send a Host header field in all HTTP/1.1 request A client MUST send a Host header field in all HTTP/1.1 request
messages. If the target URI includes an authority component, then a messages. If the target URI includes an authority component, then a
client MUST send a field-value for Host that is identical to that client MUST send a field value for Host that is identical to that
authority component, excluding any userinfo subcomponent and its "@" authority component, excluding any userinfo subcomponent and its "@"
delimiter (Section 2.7.1). If the authority component is missing or delimiter (Section 2.5.1). If the authority component is missing or
undefined for the target URI, then a client MUST send a Host header undefined for the target URI, then a client MUST send a Host header
field with an empty field-value. field with an empty field value.
Since the Host field-value is critical information for handling a Since the Host field value is critical information for handling a
request, a user agent SHOULD generate Host as the first header field request, a user agent SHOULD generate Host as the first header field
following the request-line. following the request-line.
For example, a GET request to the origin server for For example, a GET request to the origin server for
<http://www.example.org/pub/WWW/> would begin with: <http://www.example.org/pub/WWW/> would begin with:
GET /pub/WWW/ HTTP/1.1 GET /pub/WWW/ HTTP/1.1
Host: www.example.org Host: www.example.org
A client MUST send a Host header field in an HTTP/1.1 request even if A client MUST send a Host header field in an HTTP/1.1 request even if
the request-target is in the absolute-form, since this allows the the request-target is in the absolute-form, since this allows the
Host information to be forwarded through ancient HTTP/1.0 proxies Host information to be forwarded through ancient HTTP/1.0 proxies
that might not have implemented Host. that might not have implemented Host.
When a proxy receives a request with an absolute-form of When a proxy receives a request with an absolute-form of request-
request-target, the proxy MUST ignore the received Host header field target, the proxy MUST ignore the received Host header field (if any)
(if any) and instead replace it with the host information of the and instead replace it with the host information of the request-
request-target. A proxy that forwards such a request MUST generate a target. A proxy that forwards such a request MUST generate a new
new Host field-value based on the received request-target rather than Host field value based on the received request-target rather than
forward the received Host field-value. forward the received Host field value.
When an origin server receives a request with an absolute-form of
request-target, the origin server MUST ignore the received Host
header field (if any) and instead use the host information of the
request-target. Note that if the request-target does not have an
authority component, an empty Host header field will be sent in this
case.
Since the Host header field acts as an application-level routing Since the Host header field acts as an application-level routing
mechanism, it is a frequent target for malware seeking to poison a mechanism, it is a frequent target for malware seeking to poison a
shared cache or redirect a request to an unintended server. An shared cache or redirect a request to an unintended server. An
interception proxy is particularly vulnerable if it relies on the interception proxy is particularly vulnerable if it relies on the
Host field-value for redirecting requests to internal servers, or for Host field value for redirecting requests to internal servers, or for
use as a cache key in a shared cache, without first verifying that use as a cache key in a shared cache, without first verifying that
the intercepted connection is targeting a valid IP address for that the intercepted connection is targeting a valid IP address for that
host. host.
A server MUST respond with a 400 (Bad Request) status code to any A server MUST respond with a 400 (Bad Request) status code to any
HTTP/1.1 request message that lacks a Host header field and to any HTTP/1.1 request message that lacks a Host header field and to any
request message that contains more than one Host header field or a request message that contains more than one Host header field or a
Host header field with an invalid field-value. Host header field with an invalid field value.
5.7. Message Forwarding 5.7. Message Forwarding
As described in Section 2.3, intermediaries can serve a variety of As described in Section 2.2, intermediaries can serve a variety of
roles in the processing of HTTP requests and responses. Some roles in the processing of HTTP requests and responses. Some
intermediaries are used to improve performance or availability. intermediaries are used to improve performance or availability.
Others are used for access control or to filter content. Since an Others are used for access control or to filter content. Since an
HTTP stream has characteristics similar to a pipe-and-filter HTTP stream has characteristics similar to a pipe-and-filter
architecture, there are no inherent limits to the extent an architecture, there are no inherent limits to the extent an
intermediary can enhance (or interfere) with either direction of the intermediary can enhance (or interfere) with either direction of the
stream. stream.
An intermediary not acting as a tunnel MUST implement the Connection An intermediary not acting as a tunnel MUST implement the Connection
header field, as specified in Section 6.1, and exclude fields from header field, as specified in Section 9.1 of [Messaging], and exclude
being forwarded that are only intended for the incoming connection. fields from being forwarded that are only intended for the incoming
connection.
An intermediary MUST NOT forward a message to itself unless it is An intermediary MUST NOT forward a message to itself unless it is
protected from an infinite request loop. In general, an intermediary protected from an infinite request loop. In general, an intermediary
ought to recognize its own server names, including any aliases, local ought to recognize its own server names, including any aliases, local
variations, or literal IP addresses, and respond to such requests variations, or literal IP addresses, and respond to such requests
directly. directly.
An HTTP message can be parsed as a stream for incremental processing An HTTP message can be parsed as a stream for incremental processing
or forwarding downstream. However, recipients cannot rely on or forwarding downstream. However, recipients cannot rely on
incremental delivery of partial messages, since some implementations incremental delivery of partial messages, since some implementations
skipping to change at line 1671 skipping to change at page 45, line 37
protocols and recipients between the user agent and the server (on protocols and recipients between the user agent and the server (on
requests) or between the origin server and the client (on responses), requests) or between the origin server and the client (on responses),
similar to the "Received" header field in email (Section 3.6.7 of similar to the "Received" header field in email (Section 3.6.7 of
[RFC5322]). Via can be used for tracking message forwards, avoiding [RFC5322]). Via can be used for tracking message forwards, avoiding
request loops, and identifying the protocol capabilities of senders request loops, and identifying the protocol capabilities of senders
along the request/response chain. along the request/response chain.
Via = 1#( received-protocol RWS received-by [ RWS comment ] ) Via = 1#( received-protocol RWS received-by [ RWS comment ] )
received-protocol = [ protocol-name "/" ] protocol-version received-protocol = [ protocol-name "/" ] protocol-version
; see Section 6.7 ; see [Messaging], Section 9.9
received-by = ( uri-host [ ":" port ] ) / pseudonym received-by = pseudonym [ ":" port ]
pseudonym = token pseudonym = token
Multiple Via field values represent each proxy or gateway that has Each member of the Via field value represents a proxy or gateway that
forwarded the message. Each intermediary appends its own information has forwarded the message. Each intermediary appends its own
about how the message was received, such that the end result is information about how the message was received, such that the end
ordered according to the sequence of forwarding recipients. result is ordered according to the sequence of forwarding recipients.
A proxy MUST send an appropriate Via header field, as described A proxy MUST send an appropriate Via header field, as described
below, in each message that it forwards. An HTTP-to-HTTP gateway below, in each message that it forwards. An HTTP-to-HTTP gateway
MUST send an appropriate Via header field in each inbound request MUST send an appropriate Via header field in each inbound request
message and MAY send a Via header field in forwarded response message and MAY send a Via header field in forwarded response
messages. messages.
For each intermediary, the received-protocol indicates the protocol For each intermediary, the received-protocol indicates the protocol
and protocol version used by the upstream sender of the message. and protocol version used by the upstream sender of the message.
Hence, the Via field value records the advertised protocol Hence, the Via field value records the advertised protocol
capabilities of the request/response chain such that they remain capabilities of the request/response chain such that they remain
visible to downstream recipients; this can be useful for determining visible to downstream recipients; this can be useful for determining
what backwards-incompatible features might be safe to use in what backwards-incompatible features might be safe to use in
response, or within a later request, as described in Section 2.6. response, or within a later request, as described in Section 3.5.
For brevity, the protocol-name is omitted when the received protocol For brevity, the protocol-name is omitted when the received protocol
is HTTP. is HTTP.
The received-by portion of the field value is normally the host and The received-by portion is normally the host and optional port number
optional port number of a recipient server or client that of a recipient server or client that subsequently forwarded the
subsequently forwarded the message. However, if the real host is message. However, if the real host is considered to be sensitive
considered to be sensitive information, a sender MAY replace it with information, a sender MAY replace it with a pseudonym. If a port is
a pseudonym. If a port is not provided, a recipient MAY interpret not provided, a recipient MAY interpret that as meaning it was
that as meaning it was received on the default TCP port, if any, for received on the default TCP port, if any, for the received-protocol.
the received-protocol.
A sender MAY generate comments in the Via header field to identify A sender MAY generate comments to identify the software of each
the software of each recipient, analogous to the User-Agent and recipient, analogous to the User-Agent and Server header fields.
Server header fields. However, all comments in the Via field are However, comments in Via are optional, and a recipient MAY remove
optional, and a recipient MAY remove them prior to forwarding the them prior to forwarding the message.
message.
For example, a request message could be sent from an HTTP/1.0 user For example, a request message could be sent from an HTTP/1.0 user
agent to an internal proxy code-named "fred", which uses HTTP/1.1 to agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
forward the request to a public proxy at p.example.net, which forward the request to a public proxy at p.example.net, which
completes the request by forwarding it to the origin server at completes the request by forwarding it to the origin server at
www.example.com. The request received by www.example.com would then www.example.com. The request received by www.example.com would then
have the following Via header field: have the following Via header field:
Via: 1.0 fred, 1.1 p.example.net Via: 1.0 fred, 1.1 p.example.net
An intermediary used as a portal through a network firewall SHOULD An intermediary used as a portal through a network firewall SHOULD
NOT forward the names and ports of hosts within the firewall region NOT forward the names and ports of hosts within the firewall region
unless it is explicitly enabled to do so. If not enabled, such an unless it is explicitly enabled to do so. If not enabled, such an
intermediary SHOULD replace each received-by host of any host behind intermediary SHOULD replace each received-by host of any host behind
the firewall by an appropriate pseudonym for that host. the firewall by an appropriate pseudonym for that host.
An intermediary MAY combine an ordered subsequence of Via header An intermediary MAY combine an ordered subsequence of Via header
field entries into a single such entry if the entries have identical field list members into a single member if the entries have identical
received-protocol values. For example, received-protocol values. For example,
Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
could be collapsed to could be collapsed to
Via: 1.0 ricky, 1.1 mertz, 1.0 lucy Via: 1.0 ricky, 1.1 mertz, 1.0 lucy
A sender SHOULD NOT combine multiple entries unless they are all A sender SHOULD NOT combine multiple list members unless they are all
under the same organizational control and the hosts have already been under the same organizational control and the hosts have already been
replaced by pseudonyms. A sender MUST NOT combine entries that have replaced by pseudonyms. A sender MUST NOT combine members that have
different received-protocol values. different received-protocol values.
5.7.2. Transformations 5.7.2. Transformations
Some intermediaries include features for transforming messages and Some intermediaries include features for transforming messages and
their payloads. A proxy might, for example, convert between image their payloads. A proxy might, for example, convert between image
formats in order to save cache space or to reduce the amount of formats in order to save cache space or to reduce the amount of
traffic on a slow link. However, operational problems might occur traffic on a slow link. However, operational problems might occur
when these transformations are applied to payloads intended for when these transformations are applied to payloads intended for
critical applications, such as medical imaging or scientific data critical applications, such as medical imaging or scientific data
skipping to change at line 1776 skipping to change at page 47, line 46
name it received when forwarding the request. A proxy MUST NOT name it received when forwarding the request. A proxy MUST NOT
change the host name if the request-target contains a fully qualified change the host name if the request-target contains a fully qualified
domain name. domain name.
A proxy MUST NOT modify the "absolute-path" and "query" parts of the A proxy MUST NOT modify the "absolute-path" and "query" parts of the
received request-target when forwarding it to the next inbound received request-target when forwarding it to the next inbound
server, except as noted above to replace an empty path with "/" or server, except as noted above to replace an empty path with "/" or
"*". "*".
A proxy MAY modify the message body through application or removal of A proxy MAY modify the message body through application or removal of
a transfer coding (Section 4). a transfer coding (Section 7 of [Messaging]).
A proxy MUST NOT transform the payload (Section 3.3 of [RFC7231]) of A proxy MUST NOT transform the payload (Section 6.3) of a message
a message that contains a no-transform cache-control directive that contains a no-transform cache-control response directive
(Section 5.2 of [RFC7234]). (Section 5.2 of [Caching]).
A proxy MAY transform the payload of a message that does not contain A proxy MAY transform the payload of a message that does not contain
a no-transform cache-control directive. A proxy that transforms a a no-transform cache-control directive. A proxy that transforms the
payload MUST add a Warning header field with the warn-code of 214 payload of a 200 (OK) response can inform downstream recipients that
("Transformation Applied") if one is not already in the message (see a transformation has been applied by changing the response status
Section 5.5 of [RFC7234]). A proxy that transforms the payload of a code to 203 (Non-Authoritative Information) (Section 9.3.4).
200 (OK) response can further inform downstream recipients that a
transformation has been applied by changing the response status code
to 203 (Non-Authoritative Information) (Section 6.3.4 of [RFC7231]).
A proxy SHOULD NOT modify header fields that provide information A proxy SHOULD NOT modify header fields that provide information
about the endpoints of the communication chain, the resource state, about the endpoints of the communication chain, the resource state,
or the selected representation (other than the payload) unless the or the selected representation (other than the payload) unless the
field's definition specifically allows such modification or the field's definition specifically allows such modification or the
modification is deemed necessary for privacy or security. modification is deemed necessary for privacy or security.
3. Representations 6. Representations
Considering that a resource could be anything, and that the uniform Considering that a resource could be anything, and that the uniform
interface provided by HTTP is similar to a window through which one interface provided by HTTP is similar to a window through which one
can observe and act upon such a thing only through the communication can observe and act upon such a thing only through the communication
of messages to some independent actor on the other side, an of messages to some independent actor on the other side, an
abstraction is needed to represent ("take the place of") the current abstraction is needed to represent ("take the place of") the current
or desired state of that thing in our communications. That or desired state of that thing in our communications. That
abstraction is called a representation [REST]. abstraction is called a representation [REST].
For the purposes of HTTP, a "representation" is information that is For the purposes of HTTP, a "representation" is information that is
skipping to change at line 1819 skipping to change at page 48, line 39
resource, in a format that can be readily communicated via the resource, in a format that can be readily communicated via the
protocol, and that consists of a set of representation metadata and a protocol, and that consists of a set of representation metadata and a
potentially unbounded stream of representation data. potentially unbounded stream of representation data.
An origin server might be provided with, or be capable of generating, An origin server might be provided with, or be capable of generating,
multiple representations that are each intended to reflect the multiple representations that are each intended to reflect the
current state of a target resource. In such cases, some algorithm is current state of a target resource. In such cases, some algorithm is
used by the origin server to select one of those representations as used by the origin server to select one of those representations as
most applicable to a given request, usually based on content most applicable to a given request, usually based on content
negotiation. This "selected representation" is used to provide the negotiation. This "selected representation" is used to provide the
data and metadata for evaluating conditional requests [RFC7232] and data and metadata for evaluating conditional requests (Section 8.2)
constructing the payload for 200 (OK) and 304 (Not Modified) and constructing the payload for 200 (OK) and 304 (Not Modified)
responses to GET (Section 4.3.1). responses to GET (Section 7.3.1).
3.2. Representation Data 6.1. Representation Data
The representation data associated with an HTTP message is either The representation data associated with an HTTP message is either
provided as the payload body of the message or referred to by the provided as the payload body of the message or referred to by the
message semantics and the effective request URI. The representation message semantics and the effective request URI. The representation
data is in a format and encoding defined by the representation data is in a format and encoding defined by the representation
metadata header fields. metadata header fields.
The data type of the representation data is determined via the header The data type of the representation data is determined via the header
fields Content-Type and Content-Encoding. These define a two-layer, fields Content-Type and Content-Encoding. These define a two-layer,
ordered encoding model: ordered encoding model:
representation-data := Content-Encoding( Content-Type( bits ) ) representation-data := Content-Encoding( Content-Type( bits ) )
3.1.1.1. Media Type 6.1.1. Media Type
HTTP uses Internet media types [RFC2046] in the Content-Type HTTP uses media types [RFC2046] in the Content-Type (Section 6.2.1)
(Section 3.1.1.5) and Accept (Section 5.3.2) header fields in order and Accept (Section 8.4.2) header fields in order to provide open and
to provide open and extensible data typing and type negotiation. extensible data typing and type negotiation. Media types define both
Media types define both a data format and various processing models: a data format and various processing models: how to process that data
how to process that data in accordance with each context in which it in accordance with each context in which it is received.
is received.
media-type = type "/" subtype *( OWS ";" OWS parameter ) media-type = type "/" subtype *( OWS ";" OWS parameter )
type = token type = token
subtype = token subtype = token
The type/subtype MAY be followed by parameters in the form of The type and subtype tokens are case-insensitive.
name=value pairs.
The type, subtype, and parameter name tokens are case-insensitive. The type/subtype MAY be followed by semicolon-delimited parameters
Parameter values might or might not be case-sensitive, depending on (Section 4.4.1.4) in the form of name=value pairs. The presence or
the semantics of the parameter name. The presence or absence of a absence of a parameter might be significant to the processing of a
parameter might be significant to the processing of a media-type, media type, depending on its definition within the media type
depending on its definition within the media type registry. registry. Parameter values might or might not be case-sensitive,
depending on the semantics of the parameter name.
For example, the following For example, the following media types are equivalent in describing
examples are all equivalent, but the first is preferred for HTML text data encoded in the UTF-8 character encoding scheme, but
consistency: the first is preferred for consistency (the "charset" parameter value
is defined as being case-insensitive in [RFC2046], Section 4.1.2):
text/html;charset=utf-8 text/html;charset=utf-8
text/html;charset=UTF-8
Text/HTML;Charset="utf-8" Text/HTML;Charset="utf-8"
text/html; charset="utf-8" text/html; charset="utf-8"
text/html;charset=UTF-8
Internet media types ought to be registered with IANA according to Media types ought to be registered with IANA according to the
the procedures defined in [BCP13]. procedures defined in [BCP13].
3.1.1.2. Charset 6.1.1.1. Charset
HTTP uses charset names to indicate or negotiate the character HTTP uses charset names to indicate or negotiate the character
encoding scheme of a textual representation [RFC6365]. A charset is encoding scheme of a textual representation [RFC6365]. A charset is
identified by a case-insensitive token. identified by a case-insensitive token.
charset = token charset = token
Charset names ought to be registered in the IANA "Character Sets" Charset names ought to be registered in the IANA "Character Sets"
registry (<http://www.iana.org/assignments/character-sets>) according registry (<https://www.iana.org/assignments/character-sets>)
to the procedures defined in [RFC2978]. according to the procedures defined in Section 2 of [RFC2978].
3.1.1.3. Canonicalization and Text Defaults Note: In theory, charset names are defined by the "mime-charset"
ABNF rule defined in Section 2.3 of [RFC2978] (as corrected in
[Err1912]). That rule allows two characters that are not included
in "token" ("{" and "}"), but no charset name registered at the
time of this writing includes braces (see [Err5433]).
Internet media types are registered with a canonical form in order to 6.1.1.2. Canonicalization and Text Defaults
be interoperable among systems with varying native encoding formats.
Media types are registered with a canonical form in order to be
interoperable among systems with varying native encoding formats.
Representations selected or transferred via HTTP ought to be in Representations selected or transferred via HTTP ought to be in
canonical form, for many of the same reasons described by the canonical form, for many of the same reasons described by the
Multipurpose Internet Mail Extensions (MIME) [RFC2045]. However, the Multipurpose Internet Mail Extensions (MIME) [RFC2045]. However, the
performance characteristics of email deployments (i.e., store and performance characteristics of email deployments (i.e., store and
forward messages to peers) are significantly different from those forward messages to peers) are significantly different from those
common to HTTP and the Web (server-based information services). common to HTTP and the Web (server-based information services).
Furthermore, MIME's constraints for the sake of compatibility with Furthermore, MIME's constraints for the sake of compatibility with
older mail transfer protocols do not apply to HTTP (see Appendix A). older mail transfer protocols do not apply to HTTP (see Appendix B of
[Messaging]).
MIME's canonical form requires that media subtypes of the "text" type MIME's canonical form requires that media subtypes of the "text" type
use CRLF as the text line break. HTTP allows the transfer of text use CRLF as the text line break. HTTP allows the transfer of text
media with plain CR or LF alone representing a line break, when such media with plain CR or LF alone representing a line break, when such
line breaks are consistent for an entire representation. An HTTP line breaks are consistent for an entire representation. An HTTP
sender MAY generate, and a recipient MUST be able to parse, line sender MAY generate, and a recipient MUST be able to parse, line
breaks in text media that consist of CRLF, bare CR, or bare LF. In breaks in text media that consist of CRLF, bare CR, or bare LF. In
addition, text media in HTTP is not limited to charsets that use addition, text media in HTTP is not limited to charsets that use
octets 13 and 10 for CR and LF, respectively. This flexibility octets 13 and 10 for CR and LF, respectively. This flexibility
regarding line breaks applies only to text within a representation regarding line breaks applies only to text within a representation
that has been assigned a "text" media type; it does not apply to that has been assigned a "text" media type; it does not apply to
"multipart" types or HTTP elements outside the payload body (e.g., "multipart" types or HTTP elements outside the payload body (e.g.,
header fields). header fields).
If a representation is encoded with a content-coding, the underlying If a representation is encoded with a content-coding, the underlying
data ought to be in a form defined above prior to being encoded. data ought to be in a form defined above prior to being encoded.
3.1.1.4. Multipart Types 6.1.1.3. Multipart Types
MIME provides for a number of "multipart" types -- encapsulations of MIME provides for a number of "multipart" types -- encapsulations of
one or more representations within a single message body. All one or more representations within a single message body. All
multipart types share a common syntax, as defined in Section 5.1.1 of multipart types share a common syntax, as defined in Section 5.1.1 of
[RFC2046], and include a boundary parameter as part of the media type [RFC2046], and include a boundary parameter as part of the media type
value. The message body is itself a protocol element; a sender MUST value. The message body is itself a protocol element; a sender MUST
generate only CRLF to represent line breaks between body parts. generate only CRLF to represent line breaks between body parts.
HTTP message framing does not use the multipart boundary as an HTTP message framing does not use the multipart boundary as an
indicator of message body length, though it might be used by indicator of message body length, though it might be used by
implementations that generate or process the payload. For example, implementations that generate or process the payload. For example,
the "multipart/form-data" type is often used for carrying form data the "multipart/form-data" type is often used for carrying form data
in a request, as described in [RFC2388], and the "multipart/ in a request, as described in [RFC7578], and the "multipart/
byteranges" type is defined by this specification for use in some 206 byteranges" type is defined by this specification for use in some 206
(Partial Content) responses [RFC7233]. (Partial Content) responses (see Section 9.3.7).
3.1.2.1. Content Codings 6.1.2. Content Codings
Content coding values indicate an encoding transformation that has Content coding values indicate an encoding transformation that has
been or can be applied to a representation. Content codings are been or can be applied to a representation. Content codings are
primarily used to allow a representation to be compressed or primarily used to allow a representation to be compressed or
otherwise usefully transformed without losing the identity of its otherwise usefully transformed without losing the identity of its
underlying media type and without loss of information. Frequently, underlying media type and without loss of information. Frequently,
the representation is stored in coded form, transmitted directly, and the representation is stored in coded form, transmitted directly, and
only decoded by the final recipient. only decoded by the final recipient.
content-coding = token content-coding = token
All content-coding values are case-insensitive and ought to be All content codings are case-insensitive and ought to be registered
registered within the "HTTP Content Coding Registry", as defined in within the "HTTP Content Coding Registry", as defined in
Section 8.4. They are used in the Accept-Encoding (Section 5.3.4) Section 6.1.2.4
and Content-Encoding (Section 3.1.2.2) header fields.
Content-coding values are used in the Accept-Encoding (Section 8.4.4)
and Content-Encoding (Section 6.2.2) header fields.
The following content-coding values are defined by this The following content-coding values are defined by this
specification: specification:
compress (and x-compress): See Section 4.2.1 of [RFC7230]. +------------+------------------------------------------+-----------+
| Name | Description | Reference |
deflate: See Section 4.2.2 of [RFC7230]. +------------+------------------------------------------+-----------+
| compress | UNIX "compress" data format [Welch] | Section 6 |
gzip (and x-gzip): See Section 4.2.3 of [RFC7230]. | | | .1.2.1 |
| deflate | "deflate" compressed data ([RFC1951]) | Section 6 |
+------------+--------------------------------------+---------------+ | | inside the "zlib" data format | .1.2.2 |
| Name | Description | Reference | | | ([RFC1950]) | |
+------------+--------------------------------------+---------------+ | gzip | GZIP file format [RFC1952] | Section 6 |
| compress | UNIX "compress" data format [Welch] | Section 4.2.1 | | | | .1.2.3 |
| deflate | "deflate" compressed data | Section 4.2.2 | | identity | Reserved (synonym for "no encoding" in | Section 8 |
| | ([RFC1951]) inside the "zlib" data | | | | Accept-Encoding) | .4.4 |
| | format ([RFC1950]) | | | x-compress | Deprecated (alias for compress) | Section 6 |
| gzip | GZIP file format [RFC1952] | Section 4.2.3 | | | | .1.2.1 |
| identity | Reserved (synonym for "no encoding" in | Section 5.3.4 | | x-gzip | Deprecated (alias for gzip) | Section 6 |
| | Accept-Encoding) | | | | | .1.2.3 |
| x-compress | Deprecated (alias for compress) | Section 4.2.1 | +------------+------------------------------------------+-----------+
| x-gzip | Deprecated (alias for gzip) | Section 4.2.3 |
+------------+--------------------------------------+---------------+
4.2. Compression Codings
The codings defined below can be used to compress the payload of a Table 2
message.
4.2.1. Compress Coding 6.1.2.1. Compress Coding
The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding
[Welch] that is commonly produced by the UNIX file compression [Welch] that is commonly produced by the UNIX file compression
program "compress". A recipient SHOULD consider "x-compress" to be program "compress". A recipient SHOULD consider "x-compress" to be
equivalent to "compress". equivalent to "compress".
4.2.2. Deflate Coding 6.1.2.2. Deflate Coding
The "deflate" coding is a "zlib" data format [RFC1950] containing a The "deflate" coding is a "zlib" data format [RFC1950] containing a
"deflate" compressed data stream [RFC1951] that uses a combination of "deflate" compressed data stream [RFC1951] that uses a combination of
the Lempel-Ziv (LZ77) compression algorithm and Huffman coding. the Lempel-Ziv (LZ77) compression algorithm and Huffman coding.
Note: Some non-conformant implementations send the "deflate" Note: Some non-conformant implementations send the "deflate"
compressed data without the zlib wrapper. compressed data without the zlib wrapper.
4.2.3. Gzip Coding 6.1.2.3. Gzip Coding
The "gzip" coding is an LZ77 coding with a 32-bit Cyclic Redundancy The "gzip" coding is an LZ77 coding with a 32-bit Cyclic Redundancy
Check (CRC) that is commonly produced by the gzip file compression Check (CRC) that is commonly produced by the gzip file compression
program [RFC1952]. A recipient SHOULD consider "x-gzip" to be program [RFC1952]. A recipient SHOULD consider "x-gzip" to be
equivalent to "gzip". equivalent to "gzip".
8.4. Content Coding Registry 6.1.2.4. Content Coding Registry
The "HTTP Content Coding Registry" defines the namespace for content
coding names (Section 4.2 of [RFC7230]). The content coding registry
is maintained at <http://www.iana.org/assignments/http-parameters>.
8.4.1. Procedure The "HTTP Content Coding Registry", maintained by IANA at
<https://www.iana.org/assignments/http-parameters/>, registers
content-coding names.
Content coding registrations MUST include the following fields: Content coding registrations MUST include the following fields:
o Name o Name
o Description o Description
o Pointer to specification text o Pointer to specification text
Names of content codings MUST NOT overlap with names of transfer Names of content codings MUST NOT overlap with names of transfer
codings (Section 4 of [RFC7230]), unless the encoding transformation codings (Section 7 of [Messaging]), unless the encoding
is identical (as is the case for the compression codings defined in transformation is identical (as is the case for the compression
Section 4.2 of [RFC7230]). codings defined in Section 6.1.2).
Values to be added to this namespace require IETF Review (see Section Values to be added to this namespace require IETF Review (see
4.1 of [RFC5226]) and MUST conform to the purpose of content coding Section 4.8 of [RFC8126]) and MUST conform to the purpose of content
defined in this section. coding defined in Section 6.1.2.
3.1.3.1. Language Tags 6.1.3. Language Tags
A language tag, as defined in [RFC5646], identifies a natural A language tag, as defined in [RFC5646], identifies a natural
language spoken, written, or otherwise conveyed by human beings for language spoken, written, or otherwise conveyed by human beings for
communication of information to other human beings. Computer communication of information to other human beings. Computer
languages are explicitly excluded. languages are explicitly excluded.
HTTP uses language tags within the Accept-Language and HTTP uses language tags within the Accept-Language and Content-
Content-Language header fields. Accept-Language uses the broader Language header fields. Accept-Language uses the broader language-
language-range production defined in Section 5.3.5, whereas range production defined in Section 8.4.5, whereas Content-Language
Content-Language uses the language-tag production defined below. uses the language-tag production defined below.
language-tag = <Language-Tag, see [RFC5646], Section 2.1> language-tag = <Language-Tag, see [RFC5646], Section 2.1>
A language tag is a sequence of one or more case-insensitive subtags, A language tag is a sequence of one or more case-insensitive subtags,
each separated by a hyphen character ("-", %x2D). In most cases, a each separated by a hyphen character ("-", %x2D). In most cases, a
language tag consists of a primary language subtag that identifies a language tag consists of a primary language subtag that identifies a
broad family of related languages (e.g., "en" = English), which is broad family of related languages (e.g., "en" = English), which is
optionally followed by a series of subtags that refine or narrow that optionally followed by a series of subtags that refine or narrow that
language's range (e.g., "en-CA" = the variety of English as language's range (e.g., "en-CA" = the variety of English as
communicated in Canada). Whitespace is not allowed within a language communicated in Canada). Whitespace is not allowed within a language
tag. Example tags include: tag. Example tags include:
fr, en-US, es-419, az-Arab, x-pig-latin, man-Nkoo-GN fr, en-US, es-419, az-Arab, x-pig-latin, man-Nkoo-GN
See [RFC5646] for further information. See [RFC5646] for further information.
2. Range Units 6.1.4. Range Units
A representation can be partitioned into subranges according to Representation data can be partitioned into subranges when there are
various structural units, depending on the structure inherent in the addressable structural units inherent to that data's content coding
representation's media type. This "range unit" is used in the or media type. For example, octet (a.k.a., byte) boundaries are a
Accept-Ranges (Section 2.3) response header field to advertise structural unit common to all representation data, allowing
support for range requests, the Range (Section 3.1) request header partitions of the data to be identified as a range of bytes at some
field to delineate the parts of a representation that are requested, offset from the start or end of that data.
and the Content-Range (Section 4.2) payload header field to describe
which part of a representation is being transferred.
range-unit = bytes-unit / other-range-unit This general notion of a "range unit" is used in the Accept-Ranges
(Section 10.4.1) response header field to advertise support for range
requests, the Range (Section 8.3) request header field to delineate
the parts of a representation that are requested, and the Content-
Range (Section 6.3.4) payload header field to describe which part of
a representation is being transferred.
range-unit = token
All range unit names are case-insensitive and ought to be registered
within the "HTTP Range Unit Registry", as defined in Section 6.1.4.4
The following range unit names are defined by this document:
+------------+-----------------------------------------+------------+ +------------+-----------------------------------------+------------+
| Range Unit | Description | Reference | | Range Unit | Description | Reference |
| Name | | | | Name | | |
+------------+-----------------------------------------+------------+ +------------+-----------------------------------------+------------+
| bytes | a range of octets | Section 2.1 | | bytes | a range of octets | Section 6. |
| none | reserved as keyword, indicating no | Section 2.3 | | | | 1.4.2 |
| | ranges are supported | | | none | reserved as keyword to indicate range | Section 10 |
| | requests are not supported | .4.1 |
+------------+-----------------------------------------+------------+ +------------+-----------------------------------------+------------+
2.1. Byte Ranges Table 3
Since representation data is transferred in payloads as a sequence of 6.1.4.1. Range Specifiers
octets, a byte range is a meaningful substructure for any
representation transferable over HTTP (Section 3 of [RFC7231]). The
"bytes" range unit is defined for expressing subranges of the data's
octet sequence.
bytes-unit = "bytes" Ranges are expressed in terms of a range unit paired with a set of
range specifiers. The range unit name determines what kinds of
range-spec are applicable to its own specifiers. Hence, the
following gramar is generic: each range unit is expected to specify
requirements on when int-range, suffix-range, and other-range are
allowed.
A byte-range request can specify a single range of bytes or a set of A range request can specify a single range or a set of ranges within
ranges within a single representation. a single representation.
byte-ranges-specifier = bytes-unit "=" byte-range-set ranges-specifier = range-unit "=" range-set
byte-range-set = 1#( byte-range-spec / suffix-byte-range-spec ) range-set = 1#range-spec
byte-range-spec = first-byte-pos "-" [ last-byte-pos ] range-spec = int-range
first-byte-pos = 1*DIGIT / suffix-range
last-byte-pos = 1*DIGIT / other-range
The first-byte-pos value in a byte-range-spec gives the byte-offset An int-range is a range expressed as two non-negative integers or as
of the first byte in a range. The last-byte-pos value gives the one non-negative integer through to the end of the representation
byte-offset of the last byte in the range; that is, the byte data. The range unit specifies what the integers mean (e.g., they
positions specified are inclusive. Byte offsets start at zero. might indicate unit offsets from the beginning, inclusive numbered
parts, etc.).
Examples of byte-ranges-specifier values: int-range = first-pos "-" [ last-pos ]
first-pos = 1*DIGIT
last-pos = 1*DIGIT
An int-range is invalid if the last-pos value is present and less
than the first-pos.
A suffix-range is a range expressed as a suffix of the representation
data with the provided non-negative integer maximum length (in range
units). In other words, the last N units of the representation data.
suffix-range = "-" suffix-length
suffix-length = 1*DIGIT
To provide for extensibility, the other-range rule is a mostly
unconstrained grammar that allows application-specific or future
range units to define additional range specifiers.
other-range = 1*( %x21-2B / %x2D-7E )
; 1*(VCHAR excluding comma)
6.1.4.2. Byte Ranges
The "bytes" range unit is used to express subranges of a
representation data's octet sequence. Each byte range is expressed
as an integer range at some offset, relative to either the beginning
(int-range) or end (suffix-range) of the representation data. Byte
ranges do not use the other-range specifier.
The first-pos value in a bytes int-range gives the offset of the
first byte in a range. The last-pos value gives the offset of the
last byte in the range; that is, the byte positions specified are
inclusive. Byte offsets start at zero.
If the representation data has a content coding applied, each byte
range is calculated with respect to the encoded sequence of bytes,
not the sequence of underlying bytes that would be obtained after
decoding.
Examples of bytes range specifiers:
o The first 500 bytes (byte offsets 0-499, inclusive): o The first 500 bytes (byte offsets 0-499, inclusive):
bytes=0-499 bytes=0-499
o The second 500 bytes (byte offsets 500-999, inclusive): o The second 500 bytes (byte offsets 500-999, inclusive):
bytes=500-999 bytes=500-999
A byte-range-spec is invalid if the last-byte-pos value is present
and less than the first-byte-pos.
A client can limit the number of bytes requested without knowing the A client can limit the number of bytes requested without knowing the
size of the selected representation. If the last-byte-pos value is size of the selected representation. If the last-pos value is
absent, or if the value is greater than or equal to the current absent, or if the value is greater than or equal to the current
length of the representation data, the byte range is interpreted as length of the representation data, the byte range is interpreted as
the remainder of the representation (i.e., the server replaces the the remainder of the representation (i.e., the server replaces the
value of last-byte-pos with a value that is one less than the current value of last-pos with a value that is one less than the current
length of the selected representation). length of the selected representation).
A client can request the last N bytes of the selected representation A client can request the last N bytes of the selected representation
using a suffix-byte-range-spec. using a suffix-range. If the selected representation is shorter than
the specified suffix-length, the entire representation is used.
suffix-byte-range-spec = "-" suffix-length
suffix-length = 1*DIGIT
If the selected representation is shorter than the specified
suffix-length, the entire representation is used.
Additional examples, assuming a representation of length 10000: Additional examples, assuming a representation of length 10000:
o The final 500 bytes (byte offsets 9500-9999, inclusive): o The final 500 bytes (byte offsets 9500-9999, inclusive):
bytes=-500 bytes=-500
Or: Or:
bytes=9500- bytes=9500-
o The first and last bytes only (bytes 0 and 9999): o The first and last bytes only (bytes 0 and 9999):
bytes=0-0,-1 bytes=0-0,-1
o The first, middle, and last 1000 bytes:
bytes= 0-999, 4500-5499, -1000
o Other valid (but not canonical) specifications of the second 500 o Other valid (but not canonical) specifications of the second 500
bytes (byte offsets 500-999, inclusive): bytes (byte offsets 500-999, inclusive):
bytes=500-600,601-999 bytes=500-600,601-999
bytes=500-700,601-999 bytes=500-700,601-999
If a valid byte-range-set includes at least one byte-range-spec with If a valid bytes range-set includes at least one range-spec with a
a first-byte-pos that is less than the current length of the first-pos that is less than the current length of the representation,
representation, or at least one suffix-byte-range-spec with a or at least one suffix-range with a non-zero suffix-length, then the
non-zero suffix-length, then the byte-range-set is satisfiable. bytes range-set is satisfiable. Otherwise, the bytes range-set is
Otherwise, the byte-range-set is unsatisfiable. unsatisfiable.
In the byte-range syntax, first-byte-pos, last-byte-pos, and In the byte-range syntax, first-pos, last-pos, and suffix-length are
suffix-length are expressed as decimal number of octets. Since there expressed as decimal number of octets. Since there is no predefined
is no predefined limit to the length of a payload, recipients MUST limit to the length of a payload, recipients MUST anticipate
anticipate potentially large decimal numerals and prevent parsing potentially large decimal numerals and prevent parsing errors due to
errors due to integer conversion overflows. integer conversion overflows.
2.2. Other Range Units 6.1.4.3. Other Range Units
Range units are intended to be extensible. New range units ought to Other range units, such as format-specific boundaries like pages,
be registered with IANA, as defined in Section 5.1. sections, records, rows, or time, are potentially usable in HTTP for
application-specific purposes, but are not commonly used in practice.
Implementors of alternative range units ought to consider how they
would work with content codings and general-purpose intermediaries.
other-range-unit = token Range units are intended to be extensible. New range units ought to
be registered with IANA, as defined in Section 6.1.4.4.
5.1. Range Unit Registry 6.1.4.4. Range Unit Registry
The "HTTP Range Unit Registry" defines the namespace for the range The "HTTP Range Unit Registry" defines the namespace for the range
unit names and refers to their corresponding specifications. The unit names and refers to their corresponding specifications. It is
registry has been created and is now maintained at maintained at <https://www.iana.org/assignments/http-parameters>.
<http://www.iana.org/assignments/http-parameters>.
5.1.1. Procedure
Registration of an HTTP Range Unit MUST include the following fields: Registration of an HTTP Range Unit MUST include the following fields:
o Name o Name
o Description o Description
o Pointer to specification text o Pointer to specification text
Values to be added to this namespace require IETF Review (see Values to be added to this namespace require IETF Review (see
[RFC5226], Section 4.1). [RFC8126], Section 4.8).
3.1. Representation Metadata 6.2. Representation Metadata
Representation header fields provide metadata about the Representation header fields provide metadata about the
representation. When a message includes a payload body, the representation. When a message includes a payload body, the
representation header fields describe how to interpret the representation header fields describe how to interpret the
representation data enclosed in the payload body. In a response to a representation data enclosed in the payload body. In a response to a
HEAD request, the representation header fields describe the HEAD request, the representation header fields describe the
representation data that would have been enclosed in the payload body representation data that would have been enclosed in the payload body
if the same request had been a GET. if the same request had been a GET.
The following header fields convey representation metadata: The following header fields convey representation metadata:
+-------------------+-----------------+ +------------------+---------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+-------------------+-----------------+ +------------------+---------------+
| Content-Type | Section 3.1.1.5 | | Content-Type | Section 6.2.1 |
| Content-Encoding | Section 3.1.2.2 | | Content-Encoding | Section 6.2.2 |
| Content-Language | Section 3.1.3.2 | | Content-Language | Section 6.2.3 |
| Content-Location | Section 3.1.4.2 | | Content-Length | Section 6.2.4 |
+-------------------+-----------------+ | Content-Location | Section 6.2.5 |
+------------------+---------------+
3.1.1. Processing Representation Data
3.1.1.5. Content-Type 6.2.1. Content-Type
The "Content-Type" header field indicates the media type of the The "Content-Type" header field indicates the media type of the
associated representation: either the representation enclosed in the associated representation: either the representation enclosed in the
message payload or the selected representation, as determined by the message payload or the selected representation, as determined by the
message semantics. The indicated media type defines both the data message semantics. The indicated media type defines both the data
format and how that data is intended to be processed by a recipient, format and how that data is intended to be processed by a recipient,
within the scope of the received message semantics, after any content within the scope of the received message semantics, after any content
codings indicated by Content-Encoding are decoded. codings indicated by Content-Encoding are decoded.
Content-Type = media-type Content-Type = media-type
Media types are defined in Section 3.1.1.1. An example of the field Media types are defined in Section 6.1.1. An example of the field is
is
Content-Type: text/html; charset=ISO-8859-4 Content-Type: text/html; charset=ISO-8859-4
A sender that generates a message containing a payload body SHOULD A sender that generates a message containing a payload body SHOULD
generate a Content-Type header field in that message unless the generate a Content-Type header field in that message unless the
intended media type of the enclosed representation is unknown to the intended media type of the enclosed representation is unknown to the
sender. If a Content-Type header field is not present, the recipient sender. If a Content-Type header field is not present, the recipient
MAY either assume a media type of "application/octet-stream" MAY either assume a media type of "application/octet-stream"
([RFC2046], Section 4.5.1) or examine the data to determine its type. ([RFC2046], Section 4.5.1) or examine the data to determine its type.
In practice, resource owners do not always properly configure their In practice, resource owners do not always properly configure their
origin server to provide the correct Content-Type for a given origin server to provide the correct Content-Type for a given
representation, with the result that some clients will examine a representation. Some user agents examine a payload's content and, in
payload's content and override the specified type. Clients that do certain cases, override the received type (for example, see
so risk drawing incorrect conclusions, which might expose additional [Sniffing]). This "MIME sniffing" risks drawing incorrect
conclusions about the data, which might expose the user to additional
security risks (e.g., "privilege escalation"). Furthermore, it is security risks (e.g., "privilege escalation"). Furthermore, it is
impossible to determine the sender's intent by examining the data impossible to determine the sender's intended processing model by
format: many data formats match multiple media types that differ only examining the data format: many data formats match multiple media
in processing semantics. Implementers are encouraged to provide a types that differ only in processing semantics. Implementers are
means of disabling such "content sniffing" when it is used. encouraged to provide a means to disable such sniffing.
3.1.2. Encoding for Compression or Integrity
3.1.2.2. Content-Encoding 6.2.2. Content-Encoding
The "Content-Encoding" header field indicates what content codings The "Content-Encoding" header field indicates what content codings
have been applied to the representation, beyond those inherent in the have been applied to the representation, beyond those inherent in the
media type, and thus what decoding mechanisms have to be applied in media type, and thus what decoding mechanisms have to be applied in
order to obtain data in the media type referenced by the Content-Type order to obtain data in the media type referenced by the Content-Type
header field. Content-Encoding is primarily used to allow a header field. Content-Encoding is primarily used to allow a
representation's data to be compressed without losing the identity of representation's data to be compressed without losing the identity of
its underlying media type. its underlying media type.
Content-Encoding = 1#content-coding Content-Encoding = 1#content-coding
skipping to change at line 2267 skipping to change at page 59, line 42
Content-Encoding: gzip Content-Encoding: gzip
If one or more encodings have been applied to a representation, the If one or more encodings have been applied to a representation, the
sender that applied the encodings MUST generate a Content-Encoding sender that applied the encodings MUST generate a Content-Encoding
header field that lists the content codings in the order in which header field that lists the content codings in the order in which
they were applied. Additional information about the encoding they were applied. Additional information about the encoding
parameters can be provided by other header fields not defined by this parameters can be provided by other header fields not defined by this
specification. specification.
Unlike Transfer-Encoding (Section 3.3.1 of [RFC7230]), the codings Unlike Transfer-Encoding (Section 6.1 of [Messaging]), the codings
listed in Content-Encoding are a characteristic of the listed in Content-Encoding are a characteristic of the
representation; the representation is defined in terms of the coded representation; the representation is defined in terms of the coded
form, and all other metadata about the representation is about the form, and all other metadata about the representation is about the
coded form unless otherwise noted in the metadata definition. coded form unless otherwise noted in the metadata definition.
Typically, the representation is only decoded just prior to rendering Typically, the representation is only decoded just prior to rendering
or analogous usage. or analogous usage.
If the media type includes an inherent encoding, such as a data If the media type includes an inherent encoding, such as a data
format that is always compressed, then that encoding would not be format that is always compressed, then that encoding would not be
restated in Content-Encoding even if it happens to be the same restated in Content-Encoding even if it happens to be the same
skipping to change at line 2291 skipping to change at page 60, line 18
choose to publish the same data as multiple representations that choose to publish the same data as multiple representations that
differ only in whether the coding is defined as part of Content-Type differ only in whether the coding is defined as part of Content-Type
or Content-Encoding, since some user agents will behave differently or Content-Encoding, since some user agents will behave differently
in their handling of each response (e.g., open a "Save as ..." dialog in their handling of each response (e.g., open a "Save as ..." dialog
instead of automatic decompression and rendering of content). instead of automatic decompression and rendering of content).
An origin server MAY respond with a status code of 415 (Unsupported An origin server MAY respond with a status code of 415 (Unsupported
Media Type) if a representation in the request message has a content Media Type) if a representation in the request message has a content
coding that is not acceptable. coding that is not acceptable.
3.1.3. Audience Language 6.2.3. Content-Language
3.1.3.2. Content-Language
The "Content-Language" header field describes the natural language(s) The "Content-Language" header field describes the natural language(s)
of the intended audience for the representation. Note that this of the intended audience for the representation. Note that this
might not be equivalent to all the languages used within the might not be equivalent to all the languages used within the
representation. representation.
Content-Language = 1#language-tag Content-Language = 1#language-tag
Language tags are defined in Section 3.1.3.1. The primary purpose of Language tags are defined in Section 6.1.3. The primary purpose of
Content-Language is to allow a user to identify and differentiate Content-Language is to allow a user to identify and differentiate
representations according to the users' own preferred language. representations according to the users' own preferred language.
Thus, if the content is intended only for a Danish-literate audience, Thus, if the content is intended only for a Danish-literate audience,
the appropriate field is the appropriate field is
Content-Language: da Content-Language: da
If no Content-Language is specified, the default is that the content If no Content-Language is specified, the default is that the content
is intended for all language audiences. This might mean that the is intended for all language audiences. This might mean that the
sender does not consider it to be specific to any natural language, sender does not consider it to be specific to any natural language,
skipping to change at line 2332 skipping to change at page 61, line 10
However, just because multiple languages are present within a However, just because multiple languages are present within a
representation does not mean that it is intended for multiple representation does not mean that it is intended for multiple
linguistic audiences. An example would be a beginner's language linguistic audiences. An example would be a beginner's language
primer, such as "A First Lesson in Latin", which is clearly intended primer, such as "A First Lesson in Latin", which is clearly intended
to be used by an English-literate audience. In this case, the to be used by an English-literate audience. In this case, the
Content-Language would properly only include "en". Content-Language would properly only include "en".
Content-Language MAY be applied to any media type -- it is not Content-Language MAY be applied to any media type -- it is not
limited to textual documents. limited to textual documents.
3.3.2. Content-Length 6.2.4. Content-Length
[[CREF2: The "Content-Length" header field indicates the number of
data octets (body length) for the representation. In some cases,
Content-Length is used to define or estimate message framing. ]]
Content-Length = 1*DIGIT Content-Length = 1*DIGIT
An example is An example is
Content-Length: 3495 Content-Length: 3495
A sender MUST NOT send a Content-Length header field in any message A sender MUST NOT send a Content-Length header field in any message
that contains a Transfer-Encoding header field. that contains a Transfer-Encoding header field.
A user agent SHOULD send a Content-Length in a request message when A user agent SHOULD send a Content-Length in a request message when
no Transfer-Encoding is sent and the request method defines a meaning no Transfer-Encoding is sent and the request method defines a meaning
for an enclosed payload body. For example, a Content-Length header for an enclosed payload body. For example, a Content-Length header
field is normally sent in a POST request even when the value is 0 field is normally sent in a POST request even when the value is 0
(indicating an empty payload body). A user agent SHOULD NOT send a (indicating an empty payload body). A user agent SHOULD NOT send a
Content-Length header field when the request message does not contain Content-Length header field when the request message does not contain
a payload body and the method semantics do not anticipate such a a payload body and the method semantics do not anticipate such a
body. body.
A server MAY send a Content-Length header field in a response to a A server MAY send a Content-Length header field in a response to a
HEAD request (Section 4.3.2 of [RFC7231]); a server MUST NOT send HEAD request (Section 7.3.2); a server MUST NOT send Content-Length
Content-Length in such a response unless its field-value equals the in such a response unless its field value equals the decimal number
decimal number of octets that would have been sent in the payload of octets that would have been sent in the payload body of a response
body of a response if the same request had used the GET method. if the same request had used the GET method.
A server MAY send a Content-Length header field in a 304 (Not A server MAY send a Content-Length header field in a 304 (Not
Modified) response to a conditional GET request (Section 4.1 of Modified) response to a conditional GET request (Section 9.4.5); a
[RFC7232]); a server MUST NOT send Content-Length in such a response server MUST NOT send Content-Length in such a response unless its
unless its field-value equals the decimal number of octets that would field value equals the decimal number of octets that would have been
have been sent in the payload body of a 200 (OK) response to the same sent in the payload body of a 200 (OK) response to the same request.
request.
A server MUST NOT send a Content-Length header field in any response A server MUST NOT send a Content-Length header field in any response
with a status code of 1xx (Informational) or 204 (No Content). A with a status code of 1xx (Informational) or 204 (No Content). A
server MUST NOT send a Content-Length header field in any 2xx server MUST NOT send a Content-Length header field in any 2xx
(Successful) response to a CONNECT request (Section 4.3.6 of (Successful) response to a CONNECT request (Section 7.3.6).
[RFC7231]).
Aside from the cases defined above, in the absence of Aside from the cases defined above, in the absence of Transfer-
Transfer-Encoding, an origin server SHOULD send a Content-Length Encoding, an origin server SHOULD send a Content-Length header field
header field when the payload body size is known prior to sending the when the payload body size is known prior to sending the complete
complete header section. This will allow downstream recipients to header section. This will allow downstream recipients to measure
measure transfer progress, know when a received message is complete, transfer progress, know when a received message is complete, and
and potentially reuse the connection for additional requests. potentially reuse the connection for additional requests.
Any Content-Length field value greater than or equal to zero is Any Content-Length field value greater than or equal to zero is
valid. Since there is no predefined limit to the length of a valid. Since there is no predefined limit to the length of a
payload, a recipient MUST anticipate potentially large decimal payload, a recipient MUST anticipate potentially large decimal
numerals and prevent parsing errors due to integer conversion numerals and prevent parsing errors due to integer conversion
overflows (Section 9.3). overflows (Section 11.5).
If a message is received that has multiple Content-Length header If a message is received that has multiple Content-Length header
fields with field-values consisting of the same decimal value, or a fields with field values consisting of the same decimal value, or a
single Content-Length header field with a field value containing a single Content-Length header field with a field value containing a
list of identical decimal values (e.g., "Content-Length: 42, 42"), list of identical decimal values (e.g., "Content-Length: 42, 42"),
indicating that duplicate Content-Length header fields have been indicating that duplicate Content-Length header fields have been
generated or combined by an upstream message processor, then the generated or combined by an upstream message processor, then the
recipient MUST either reject the message as invalid or replace the recipient MUST either reject the message as invalid or replace the
duplicated field-values with a single valid Content-Length field duplicated field values with a single valid Content-Length field
containing that decimal value prior to determining the message body containing that decimal value prior to determining the message body
length or forwarding the message. length or forwarding the message.
3.1.4. Identification 6.2.5. Content-Location
3.1.4.2. Content-Location
The "Content-Location" header field references a URI that can be used The "Content-Location" header field references a URI that can be used
as an identifier for a specific resource corresponding to the as an identifier for a specific resource corresponding to the
representation in this message's payload. In other words, if one representation in this message's payload. In other words, if one
were to perform a GET request on this URI at the time of this were to perform a GET request on this URI at the time of this
message's generation, then a 200 (OK) response would contain the same message's generation, then a 200 (OK) response would contain the same
representation that is enclosed as payload in this message. representation that is enclosed as payload in this message.
Content-Location = absolute-URI / partial-URI Content-Location = absolute-URI / partial-URI
The Content-Location value is not a replacement for the effective The Content-Location value is not a replacement for the effective
Request URI (Section 5.5 of [RFC7230]). It is representation Request URI (Section 5.5). It is representation metadata. It has
metadata. It has the same syntax and semantics as the header field the same syntax and semantics as the header field of the same name
of the same name defined for MIME body parts in Section 4 of defined for MIME body parts in Section 4 of [RFC2557]. However, its
[RFC2557]. However, its appearance in an HTTP message has some appearance in an HTTP message has some special implications for HTTP
special implications for HTTP recipients. recipients.
If Content-Location is included in a 2xx (Successful) response If Content-Location is included in a 2xx (Successful) response
message and its value refers (after conversion to absolute form) to a message and its value refers (after conversion to absolute form) to a
URI that is the same as the effective request URI, then the recipient URI that is the same as the effective request URI, then the recipient
MAY consider the payload to be a current representation of that MAY consider the payload to be a current representation of that
resource at the time indicated by the message origination date. For resource at the time indicated by the message origination date. For
a GET (Section 4.3.1) or HEAD (Section 4.3.2) request, this is the a GET (Section 7.3.1) or HEAD (Section 7.3.2) request, this is the
same as the default semantics when no Content-Location is provided by same as the default semantics when no Content-Location is provided by
the server. For a state-changing request like PUT (Section 4.3.4) or the server. For a state-changing request like PUT (Section 7.3.4) or
POST (Section 4.3.3), it implies that the server's response contains POST (Section 7.3.3), it implies that the server's response contains
the new representation of that resource, thereby distinguishing it the new representation of that resource, thereby distinguishing it
from representations that might only report about the action (e.g., from representations that might only report about the action (e.g.,
"It worked!"). This allows authoring applications to update their "It worked!"). This allows authoring applications to update their
local copies without the need for a subsequent GET request. local copies without the need for a subsequent GET request.
If Content-Location is included in a 2xx (Successful) response If Content-Location is included in a 2xx (Successful) response
message and its field-value refers to a URI that differs from the message and its field value refers to a URI that differs from the
effective request URI, then the origin server claims that the URI is effective request URI, then the origin server claims that the URI is
an identifier for a different resource corresponding to the enclosed an identifier for a different resource corresponding to the enclosed
representation. Such a claim can only be trusted if both identifiers representation. Such a claim can only be trusted if both identifiers
share the same resource owner, which cannot be programmatically share the same resource owner, which cannot be programmatically
determined via HTTP. determined via HTTP.
o For a response to a GET or HEAD request, this is an indication o For a response to a GET or HEAD request, this is an indication
that the effective request URI refers to a resource that is that the effective request URI refers to a resource that is
subject to content negotiation and the Content-Location subject to content negotiation and the Content-Location field
field-value is a more specific identifier for the selected value is a more specific identifier for the selected
representation. representation.
o For a 201 (Created) response to a state-changing method, a o For a 201 (Created) response to a state-changing method, a
Content-Location field-value that is identical to the Location Content-Location field value that is identical to the Location
field-value indicates that this payload is a current field value indicates that this payload is a current
representation of the newly created resource. representation of the newly created resource.
o Otherwise, such a Content-Location indicates that this payload is o Otherwise, such a Content-Location indicates that this payload is
a representation reporting on the requested action's status and a representation reporting on the requested action's status and
that the same report is available (for future access with GET) at that the same report is available (for future access with GET) at
the given URI. For example, a purchase transaction made via a the given URI. For example, a purchase transaction made via a
POST request might include a receipt document as the payload of POST request might include a receipt document as the payload of
the 200 (OK) response; the Content-Location field-value provides the 200 (OK) response; the Content-Location field value provides
an identifier for retrieving a copy of that same receipt in the an identifier for retrieving a copy of that same receipt in the
future. future.
A user agent that sends Content-Location in a request message is A user agent that sends Content-Location in a request message is
stating that its value refers to where the user agent originally stating that its value refers to where the user agent originally
obtained the content of the enclosed representation (prior to any obtained the content of the enclosed representation (prior to any
modifications made by that user agent). In other words, the user modifications made by that user agent). In other words, the user
agent is providing a back link to the source of the original agent is providing a back link to the source of the original
representation. representation.
skipping to change at line 2481 skipping to change at page 64, line 16
For example, if a client makes a PUT request on a negotiated resource For example, if a client makes a PUT request on a negotiated resource
and the origin server accepts that PUT (without redirection), then and the origin server accepts that PUT (without redirection), then
the new state of that resource is expected to be consistent with the the new state of that resource is expected to be consistent with the
one representation supplied in that PUT; the Content-Location cannot one representation supplied in that PUT; the Content-Location cannot
be used as a form of reverse content selection identifier to update be used as a form of reverse content selection identifier to update
only one of the negotiated representations. If the user agent had only one of the negotiated representations. If the user agent had
wanted the latter semantics, it would have applied the PUT directly wanted the latter semantics, it would have applied the PUT directly
to the Content-Location URI. to the Content-Location URI.
3.3. Payload Semantics 6.3. Payload
Some HTTP messages transfer a complete or partial representation as Some HTTP messages transfer a complete or partial representation as
the message "payload". In some cases, a payload might contain only the message "payload". In some cases, a payload might contain only
the associated representation's header fields (e.g., responses to the associated representation's header fields (e.g., responses to
HEAD) or only some part(s) of the representation data (e.g., the 206 HEAD) or only some part(s) of the representation data (e.g., the 206
(Partial Content) status code). (Partial Content) status code).
Header fields that specifically describe the payload, rather than the Header fields that specifically describe the payload, rather than the
associated representation, are referred to as "payload header associated representation, are referred to as "payload header
fields". Payload header fields are defined in other parts of this fields". Payload header fields are defined in other parts of this
specification, due to their impact on message parsing. specification, due to their impact on message parsing.
+-------------------+----------------------------+ +-------------------+----------------------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+-------------------+----------------------------+ +-------------------+----------------------------+
| Content-Length | Section 3.3.2 of [RFC7230] | | Content-Range | Section 6.3.4 |
| Content-Range | Section 4.2 of [RFC7233] | | Trailer | Section 4.6.3 |
| Trailer | Section 4.4 of [RFC7230] | | Transfer-Encoding | Section 6.1 of [Messaging] |
| Transfer-Encoding | Section 3.3.1 of [RFC7230] |
+-------------------+----------------------------+ +-------------------+----------------------------+
X.X.X. [Purpose] 6.3.1. Purpose
The purpose of a payload in a request is defined by the method The purpose of a payload in a request is defined by the method
semantics. For example, a representation in the payload of a PUT semantics. For example, a representation in the payload of a PUT
request (Section 4.3.4) represents the desired state of the target request (Section 7.3.4) represents the desired state of the target
resource if the request is successfully applied, whereas a resource if the request is successfully applied, whereas a
representation in the payload of a POST request (Section 4.3.3) representation in the payload of a POST request (Section 7.3.3)
represents information to be processed by the target resource. represents information to be processed by the target resource.
In a response, the payload's purpose is defined by both the request In a response, the payload's purpose is defined by both the request
method and the response status code. For example, the payload of a method and the response status code. For example, the payload of a
200 (OK) response to GET (Section 4.3.1) represents the current state 200 (OK) response to GET (Section 7.3.1) represents the current state
of the target resource, as observed at the time of the message of the target resource, as observed at the time of the message
origination date (Section 7.1.1.2), whereas the payload of the same origination date (Section 10.1.1.2), whereas the payload of the same
status code in a response to POST might represent either the status code in a response to POST might represent either the
processing result or the new state of the target resource after processing result or the new state of the target resource after
applying the processing. Response messages with an error status code applying the processing. Response messages with an error status code
usually contain a payload that represents the error condition, such usually contain a payload that represents the error condition, such
that it describes the error state and what next steps are suggested that it describes the error state and what next steps are suggested
for resolving it. for resolving it.
3.1.4.1. Identifying a Representation 6.3.2. Identification
When a complete or partial representation is transferred in a message When a complete or partial representation is transferred in a message
payload, it is often desirable for the sender to supply, or the payload, it is often desirable for the sender to supply, or the
recipient to determine, an identifier for a resource corresponding to recipient to determine, an identifier for a resource corresponding to
that representation. that representation.
For a request message: For a request message:
o If the request has a Content-Location header field, then the o If the request has a Content-Location header field, then the
sender asserts that the payload is a representation of the sender asserts that the payload is a representation of the
resource identified by the Content-Location field-value. However, resource identified by the Content-Location field value. However,
such an assertion cannot be trusted unless it can be verified by such an assertion cannot be trusted unless it can be verified by
other means (not defined by this specification). The information other means (not defined by this specification). The information
might still be useful for revision history links. might still be useful for revision history links.
o Otherwise, the payload is unidentified. o Otherwise, the payload is unidentified.
For a response message, the following rules are applied in order For a response message, the following rules are applied in order
until a match is found: until a match is found:
1. If the request method is GET or HEAD and the response status code 1. If the request method is GET or HEAD and the response status code
is 200 (OK), 204 (No Content), 206 (Partial Content), or 304 (Not is 200 (OK), 204 (No Content), 206 (Partial Content), or 304 (Not
Modified), the payload is a representation of the resource Modified), the payload is a representation of the resource
identified by the effective request URI (Section 5.5 of identified by the effective request URI (Section 5.5).
[RFC7230]).
2. If the request method is GET or HEAD and the response status code 2. If the request method is GET or HEAD and the response status code
is 203 (Non-Authoritative Information), the payload is a is 203 (Non-Authoritative Information), the payload is a
potentially modified or enhanced representation of the target potentially modified or enhanced representation of the target
resource as provided by an intermediary. resource as provided by an intermediary.
3. If the response has a Content-Location header field and its 3. If the response has a Content-Location header field and its field
field-value is a reference to the same URI as the effective value is a reference to the same URI as the effective request
request URI, the payload is a representation of the resource URI, the payload is a representation of the resource identified
identified by the effective request URI. by the effective request URI.
4. If the response has a Content-Location header field and its 4. If the response has a Content-Location header field and its field
field-value is a reference to a URI different from the effective value is a reference to a URI different from the effective
request URI, then the sender asserts that the payload is a request URI, then the sender asserts that the payload is a
representation of the resource identified by the Content-Location representation of the resource identified by the Content-Location
field-value. However, such an assertion cannot be trusted unless field value. However, such an assertion cannot be trusted unless
it can be verified by other means (not defined by this it can be verified by other means (not defined by this
specification). specification).
5. Otherwise, the payload is unidentified. 5. Otherwise, the payload is unidentified.
6.3.3. Payload Body 6.3.3. Payload Body
Responses to the HEAD request method (Section 4.3.2 The payload body contains the data of a request or response. This is
of [RFC7231]) never include a message body because the associated distinct from the message body (e.g., Section 6 of [Messaging]),
response header fields (e.g., Transfer-Encoding, Content-Length, which is how the payload body is transferred "on the wire", and might
etc.), if present, indicate only what their values would have been if be encoded, depending on the HTTP version in use.
the request method had been GET (Section 4.3.1 of [RFC7231]).
It is also distinct from a request or response's representation data
(Section 6.1), which can be inferred from protocol operation, rather
than necessarily appearing "on the wire."
The presence of a payload body in a request depends on whether the
request method used defines semantics for it.
The presence of a payload body in a response depends on both the
request method to which it is responding and the response status code
(Section 9).
Responses to the HEAD request method (Section 7.3.2) never include a
payload body because the associated response header fields indicate
only what their values would have been if the request method had been
GET (Section 7.3.1).
2xx (Successful) responses to a CONNECT request method 2xx (Successful) responses to a CONNECT request method
(Section 4.3.6 of [RFC7231]) switch to tunnel mode instead of (Section 7.3.6) switch the connection to tunnel mode instead of
having a message body. having a payload body.
All 1xx (Informational), 204 (No Content), and 304 (Not Modified) All 1xx (Informational), 204 (No Content), and 304 (Not Modified)
responses do not include a message body. responses do not include a payload body.
All other responses do include a message body, although the body All other responses do include a payload body, although that body
might be of zero length. might be of zero length.
4.2. Content-Range 6.3.4. Content-Range
The "Content-Range" header field is sent in a single part 206 The "Content-Range" header field is sent in a single part 206
(Partial Content) response to indicate the partial range of the (Partial Content) response to indicate the partial range of the
selected representation enclosed as the message payload, sent in each selected representation enclosed as the message payload, sent in each
part of a multipart 206 response to indicate the range enclosed part of a multipart 206 response to indicate the range enclosed
within each body part, and sent in 416 (Range Not Satisfiable) within each body part, and sent in 416 (Range Not Satisfiable)
responses to provide information about the selected representation. responses to provide information about the selected representation.
Content-Range = byte-content-range Content-Range = range-unit SP
/ other-content-range ( range-resp / unsatisfied-range )
byte-content-range = bytes-unit SP
( byte-range-resp / unsatisfied-range )
byte-range-resp = byte-range "/" ( complete-length / "*" ) range-resp = incl-range "/" ( complete-length / "*" )
byte-range = first-byte-pos "-" last-byte-pos incl-range = first-pos "-" last-pos
unsatisfied-range = "*/" complete-length unsatisfied-range = "*/" complete-length
complete-length = 1*DIGIT complete-length = 1*DIGIT
other-content-range = other-range-unit SP other-range-resp
other-range-resp = *CHAR
If a 206 (Partial Content) response contains a Content-Range header If a 206 (Partial Content) response contains a Content-Range header
field with a range unit (Section 2) that the recipient does not field with a range unit (Section 6.1.4) that the recipient does not
understand, the recipient MUST NOT attempt to recombine it with a understand, the recipient MUST NOT attempt to recombine it with a
stored representation. A proxy that receives such a message SHOULD stored representation. A proxy that receives such a message SHOULD
forward it downstream. forward it downstream.
For byte ranges, a sender SHOULD indicate the complete length of the For byte ranges, a sender SHOULD indicate the complete length of the
representation from which the range has been extracted, unless the representation from which the range has been extracted, unless the
complete length is unknown or difficult to determine. An asterisk complete length is unknown or difficult to determine. An asterisk
character ("*") in place of the complete-length indicates that the character ("*") in place of the complete-length indicates that the
representation length was unknown when the header field was representation length was unknown when the header field was
generated. generated.
skipping to change at line 2636 skipping to change at page 67, line 37
The following example illustrates when the complete length of the The following example illustrates when the complete length of the
selected representation is known by the sender to be 1234 bytes: selected representation is known by the sender to be 1234 bytes:
Content-Range: bytes 42-1233/1234 Content-Range: bytes 42-1233/1234
and this second example illustrates when the complete length is and this second example illustrates when the complete length is
unknown: unknown:
Content-Range: bytes 42-1233/* Content-Range: bytes 42-1233/*
A Content-Range field value is invalid if it contains a A Content-Range field value is invalid if it contains a range-resp
byte-range-resp that has a last-byte-pos value less than its that has a last-pos value less than its first-pos value, or a
first-byte-pos value, or a complete-length value less than or equal complete-length value less than or equal to its last-pos value. The
to its last-byte-pos value. The recipient of an invalid recipient of an invalid Content-Range MUST NOT attempt to recombine
Content-Range MUST NOT attempt to recombine the received content with the received content with a stored representation.
a stored representation.
A server generating a 416 (Range Not Satisfiable) response to a A server generating a 416 (Range Not Satisfiable) response to a byte-
byte-range request SHOULD send a Content-Range header field with an range request SHOULD send a Content-Range header field with an
unsatisfied-range value, as in the following example: unsatisfied-range value, as in the following example:
Content-Range: bytes */1234 Content-Range: bytes */1234
The complete-length in a 416 response indicates the current length of The complete-length in a 416 response indicates the current length of
the selected representation. the selected representation.
The Content-Range header field has no meaning for status codes that The Content-Range header field has no meaning for status codes that
do not explicitly describe its semantic. For this specification, do not explicitly describe its semantic. For this specification,
only the 206 (Partial Content) and 416 (Range Not Satisfiable) status only the 206 (Partial Content) and 416 (Range Not Satisfiable) status
skipping to change at line 2676 skipping to change at page 68, line 29
Content-Range: bytes 500-999/1234 Content-Range: bytes 500-999/1234
o All except for the first 500 bytes: o All except for the first 500 bytes:
Content-Range: bytes 500-1233/1234 Content-Range: bytes 500-1233/1234
o The last 500 bytes: o The last 500 bytes:
Content-Range: bytes 734-1233/1234 Content-Range: bytes 734-1233/1234
Appendix A. Internet Media Type multipart/byteranges 6.3.5. Media Type multipart/byteranges
When a 206 (Partial Content) response message includes the content of When a 206 (Partial Content) response message includes the content of
multiple ranges, they are transmitted as body parts in a multipart multiple ranges, they are transmitted as body parts in a multipart
message body ([RFC2046], Section 5.1) with the media type of message body ([RFC2046], Section 5.1) with the media type of
"multipart/byteranges". "multipart/byteranges".
The multipart/byteranges media type includes one or more body parts, The multipart/byteranges media type includes one or more body parts,
each with its own Content-Type and Content-Range fields. The each with its own Content-Type and Content-Range fields. The
required boundary parameter specifies the boundary string used to required boundary parameter specifies the boundary string used to
separate each body part. separate each body part.
skipping to change at line 2724 skipping to change at page 69, line 36
Content-Range: exampleunit 1.2-4.3/25 Content-Range: exampleunit 1.2-4.3/25
...the first range... ...the first range...
--THIS_STRING_SEPARATES --THIS_STRING_SEPARATES
Content-Type: video/example Content-Type: video/example
Content-Range: exampleunit 11.2-14.3/25 Content-Range: exampleunit 11.2-14.3/25
...the second range ...the second range
--THIS_STRING_SEPARATES-- --THIS_STRING_SEPARATES--
5.4.1. Internet Media Type multipart/byteranges The following information serves as the registration form for the
multipart/byteranges media type.
This document serves as the specification for the Internet media type
"multipart/byteranges". The following has been registered with IANA.
Type name: multipart Type name: multipart
Subtype name: byteranges Subtype name: byteranges
Required parameters: boundary Required parameters: boundary
Optional parameters: N/A Optional parameters: N/A
Encoding considerations: only "7bit", "8bit", or "binary" are Encoding considerations: only "7bit", "8bit", or "binary" are
permitted permitted
Security considerations: see Section 6 Security considerations: see Section 11
Interoperability considerations: N/A Interoperability considerations: N/A
Published specification: This specification (see Section 6.3.5).
Published specification: This specification (see Appendix A).
Applications that use this media type: HTTP components supporting Applications that use this media type: HTTP components supporting
multiple ranges in a single request. multiple ranges in a single request.
Fragment identifier considerations: N/A Fragment identifier considerations: N/A
Additional information: Additional information:
Deprecated alias names for this type: N/A Deprecated alias names for this type: N/A
Magic number(s): N/A Magic number(s): N/A
File extension(s): N/A File extension(s): N/A
Macintosh file type code(s): N/A Macintosh file type code(s): N/A
Person and email address to contact for further information: See Person and email address to contact for further information: See Aut
Authors' Addresses section. hors' Addresses section.
Intended usage: COMMON Intended usage: COMMON
Restrictions on usage: N/A Restrictions on usage: N/A
Author: See Authors' Addresses section. Author: See Authors' Addresses section.
Change controller: IESG Change controller: IESG
3.4. Content Negotiation 6.4. Content Negotiation
When responses convey payload information, whether indicating a When responses convey payload information, whether indicating a
success or an error, the origin server often has different ways of success or an error, the origin server often has different ways of
representing that information; for example, in different formats, representing that information; for example, in different formats,
languages, or encodings. Likewise, different users or user agents languages, or encodings. Likewise, different users or user agents
might have differing capabilities, characteristics, or preferences might have differing capabilities, characteristics, or preferences
that could influence which representation, among those available, that could influence which representation, among those available,
would be best to deliver. For this reason, HTTP provides mechanisms would be best to deliver. For this reason, HTTP provides mechanisms
for content negotiation. for content negotiation.
skipping to change at line 2805 skipping to change at page 71, line 18
practicality. practicality.
Note that, in all cases, HTTP is not aware of the resource semantics. Note that, in all cases, HTTP is not aware of the resource semantics.
The consistency with which an origin server responds to requests, The consistency with which an origin server responds to requests,
over time and over the varying dimensions of content negotiation, and over time and over the varying dimensions of content negotiation, and
thus the "sameness" of a resource's observed representations over thus the "sameness" of a resource's observed representations over
time, is determined entirely by whatever entity or algorithm selects time, is determined entirely by whatever entity or algorithm selects
or generates those responses. HTTP pays no attention to the man or generates those responses. HTTP pays no attention to the man
behind the curtain. behind the curtain.
3.4.1. Proactive Negotiation 6.4.1. Proactive Negotiation
When content negotiation preferences are sent by the user agent in a When content negotiation preferences are sent by the user agent in a
request to encourage an algorithm located at the server to select the request to encourage an algorithm located at the server to select the
preferred representation, it is called proactive negotiation (a.k.a., preferred representation, it is called proactive negotiation (a.k.a.,
server-driven negotiation). Selection is based on the available server-driven negotiation). Selection is based on the available
representations for a response (the dimensions over which it might representations for a response (the dimensions over which it might
vary, such as language, content-coding, etc.) compared to various vary, such as language, content-coding, etc.) compared to various
information supplied in the request, including both the explicit information supplied in the request, including both the explicit
negotiation fields of Section 5.3 and implicit characteristics, such negotiation fields of Section 8.4 and implicit characteristics, such
as the client's network address or parts of the User-Agent field. as the client's network address or parts of the User-Agent field.
Proactive negotiation is advantageous when the algorithm for Proactive negotiation is advantageous when the algorithm for
selecting from among the available representations is difficult to selecting from among the available representations is difficult to
describe to a user agent, or when the server desires to send its describe to a user agent, or when the server desires to send its
"best guess" to the user agent along with the first response (hoping "best guess" to the user agent along with the first response (hoping
to avoid the round trip delay of a subsequent request if the "best to avoid the round trip delay of a subsequent request if the "best
guess" is good enough for the user). In order to improve the guess" is good enough for the user). In order to improve the
server's guess, a user agent MAY send request header fields that server's guess, a user agent MAY send request header fields that
describe its preferences. describe its preferences.
skipping to change at line 2850 skipping to change at page 72, line 16
algorithms for generating responses to a request; and, algorithms for generating responses to a request; and,
o It limits the reusability of responses for shared caching. o It limits the reusability of responses for shared caching.
A user agent cannot rely on proactive negotiation preferences being A user agent cannot rely on proactive negotiation preferences being
consistently honored, since the origin server might not implement consistently honored, since the origin server might not implement
proactive negotiation for the requested resource or might decide that proactive negotiation for the requested resource or might decide that
sending a response that doesn't conform to the user agent's sending a response that doesn't conform to the user agent's
preferences is better than sending a 406 (Not Acceptable) response. preferences is better than sending a 406 (Not Acceptable) response.
A Vary header field (Section 7.1.4) is often sent in a response A Vary header field (Section 10.1.4) is often sent in a response
subject to proactive negotiation to indicate what parts of the subject to proactive negotiation to indicate what parts of the
request information were used in the selection algorithm. request information were used in the selection algorithm.
3.4.2. Reactive Negotiation 6.4.2. Reactive Negotiation
With reactive negotiation (a.k.a., agent-driven negotiation), With reactive negotiation (a.k.a., agent-driven negotiation),
selection of the best response representation (regardless of the selection of the best response representation (regardless of the
status code) is performed by the user agent after receiving an status code) is performed by the user agent after receiving an
initial response from the origin server that contains a list of initial response from the origin server that contains a list of
resources for alternative representations. If the user agent is not resources for alternative representations. If the user agent is not
satisfied by the initial response representation, it can perform a satisfied by the initial response representation, it can perform a
GET request on one or more of the alternative resources, selected GET request on one or more of the alternative resources, selected
based on metadata included in the list, to obtain a different form of based on metadata included in the list, to obtain a different form of
representation for that response. Selection of alternatives might be representation for that response. Selection of alternatives might be
skipping to change at line 2899 skipping to change at page 73, line 16
caches are used to distribute server load and reduce network usage. caches are used to distribute server load and reduce network usage.
Reactive negotiation suffers from the disadvantages of transmitting a Reactive negotiation suffers from the disadvantages of transmitting a
list of alternatives to the user agent, which degrades user-perceived list of alternatives to the user agent, which degrades user-perceived
latency if transmitted in the header section, and needing a second latency if transmitted in the header section, and needing a second
request to obtain an alternate representation. Furthermore, this request to obtain an alternate representation. Furthermore, this
specification does not define a mechanism for supporting automatic specification does not define a mechanism for supporting automatic
selection, though it does not prevent such a mechanism from being selection, though it does not prevent such a mechanism from being
developed as an extension. developed as an extension.
4. Request Methods 7. Request Methods
4.1. Overview 7.1. Overview
The request method token is the primary source of request semantics; The request method token is the primary source of request semantics;
it indicates the purpose for which the client has made this request it indicates the purpose for which the client has made this request
and what is expected by the client as a successful result. and what is expected by the client as a successful result.
The request method's semantics might be further specialized by the The request method's semantics might be further specialized by the
semantics of some header fields when present in a request (Section 5) semantics of some header fields when present in a request (Section 8)
if those additional semantics do not conflict with the method. For if those additional semantics do not conflict with the method. For
example, a client can send conditional request header fields example, a client can send conditional request header fields
(Section 5.2) to make the requested action conditional on the current (Section 8.2) to make the requested action conditional on the current
state of the target resource ([RFC7232]). state of the target resource.
method = token method = token
HTTP was originally designed to be usable as an interface to HTTP was originally designed to be usable as an interface to
distributed object systems. The request method was envisioned as distributed object systems. The request method was envisioned as
applying semantics to a target resource in much the same way as applying semantics to a target resource in much the same way as
invoking a defined method on an identified object would apply invoking a defined method on an identified object would apply
semantics. The method token is case-sensitive because it might be semantics.
used as a gateway to object-based systems with case-sensitive method
names. The method token is case-sensitive because it might be used as a
gateway to object-based systems with case-sensitive method names. By
convention, standardized methods are defined in all-uppercase US-
ASCII letters.
Unlike distributed objects, the standardized request methods in HTTP Unlike distributed objects, the standardized request methods in HTTP
are not resource-specific, since uniform interfaces provide for are not resource-specific, since uniform interfaces provide for
better visibility and reuse in network-based systems [REST]. Once better visibility and reuse in network-based systems [REST]. Once
defined, a standardized method ought to have the same semantics when defined, a standardized method ought to have the same semantics when
applied to any resource, though each resource determines for itself applied to any resource, though each resource determines for itself
whether those semantics are implemented or allowed. whether those semantics are implemented or allowed.
This specification defines a number of standardized methods that are This specification defines a number of standardized methods that are
commonly used in HTTP, as outlined by the following table. By commonly used in HTTP, as outlined by the following table.
convention, standardized methods are defined in all-uppercase
US-ASCII letters.
+---------+-------------------------------------------------+-------+ +---------+-------------------------------------------------+-------+
| Method | Description | Sec. | | Method | Description | Sec. |
+---------+-------------------------------------------------+-------+ +---------+-------------------------------------------------+-------+
| GET | Transfer a current representation of the target | 4.3.1 | | GET | Transfer a current representation of the target | 7.3.1 |
| | resource. | | | | resource. | |
| HEAD | Same as GET, but only transfer the status line | 4.3.2 | | HEAD | Same as GET, but only transfer the status line | 7.3.2 |
| | and header section. | | | | and header section. | |
| POST | Perform resource-specific processing on the | 4.3.3 | | POST | Perform resource-specific processing on the | 7.3.3 |
| | request payload. | | | | request payload. | |
| PUT | Replace all current representations of the | 4.3.4 | | PUT | Replace all current representations of the | 7.3.4 |
| | target resource with the request payload. | | | | target resource with the request payload. | |
| DELETE | Remove all current representations of the | 4.3.5 | | DELETE | Remove all current representations of the | 7.3.5 |
| | target resource. | | | | target resource. | |
| CONNECT | Establish a tunnel to the server identified by | 4.3.6 | | CONNECT | Establish a tunnel to the server identified by | 7.3.6 |
| | the target resource. | | | | the target resource. | |
| OPTIONS | Describe the communication options for the | 4.3.7 | | OPTIONS | Describe the communication options for the | 7.3.7 |
| | target resource. | | | | target resource. | |
| TRACE | Perform a message loop-back test along the path | 4.3.8 | | TRACE | Perform a message loop-back test along the path | 7.3.8 |
| | to the target resource. | | | | to the target resource. | |
+---------+-------------------------------------------------+-------+ +---------+-------------------------------------------------+-------+
Table 4
All general-purpose servers MUST support the methods GET and HEAD. All general-purpose servers MUST support the methods GET and HEAD.
All other methods are OPTIONAL. All other methods are OPTIONAL.
The set of methods allowed by a target resource can be listed in an The set of methods allowed by a target resource can be listed in an
Allow header field (Section 7.4.1). However, the set of allowed Allow header field (Section 10.4.2). However, the set of allowed
methods can change dynamically. When a request method is received methods can change dynamically. When a request method is received
that is unrecognized or not implemented by an origin server, the that is unrecognized or not implemented by an origin server, the
origin server SHOULD respond with the 501 (Not Implemented) status origin server SHOULD respond with the 501 (Not Implemented) status
code. When a request method is received that is known by an origin code. When a request method is received that is known by an origin
server but not allowed for the target resource, the origin server server but not allowed for the target resource, the origin server
SHOULD respond with the 405 (Method Not Allowed) status code. SHOULD respond with the 405 (Method Not Allowed) status code.
4.2. Common Method Properties 7.2. Common Method Properties
+---------+------+------------+----------------+ +---------+------+------------+----------------+
| Method | Safe | Idempotent | Reference | | Method | Safe | Idempotent | Reference |
+---------+------+------------+----------------+ +---------+------+------------+----------------+
| CONNECT | no | no | Section 4.3.6 | | CONNECT | no | no | Section 7.3.6 |
| DELETE | no | yes | Section 4.3.5 | | DELETE | no | yes | Section 7.3.5 |
| GET | yes | yes | Section 4.3.1 | | GET | yes | yes | Section 7.3.1 |
| HEAD | yes | yes | Section 4.3.2 | | HEAD | yes | yes | Section 7.3.2 |
| OPTIONS | yes | yes | Section 4.3.7 | | OPTIONS | yes | yes | Section 7.3.7 |
| POST | no | no | Section 4.3.3 | | POST | no | no | Section 7.3.3 |
| PUT | no | yes | Section 4.3.4 | | PUT | no | yes | Section 7.3.4 |
| TRACE | yes | yes | Section 4.3.8 | | TRACE | yes | yes | Section 7.3.8 |
+---------+------+------------+----------------+ +---------+------+------------+----------------+
4.2.1. Safe Methods Table 5
7.2.1. Safe Methods
Request methods are considered "safe" if their defined semantics are Request methods are considered "safe" if their defined semantics are
essentially read-only; i.e., the client does not request, and does essentially read-only; i.e., the client does not request, and does
not expect, any state change on the origin server as a result of not expect, any state change on the origin server as a result of
applying a safe method to a target resource. Likewise, reasonable applying a safe method to a target resource. Likewise, reasonable
use of a safe method is not expected to cause any harm, loss of use of a safe method is not expected to cause any harm, loss of
property, or unusual burden on the origin server. property, or unusual burden on the origin server.
This definition of safe methods does not prevent an implementation This definition of safe methods does not prevent an implementation
from including behavior that is potentially harmful, that is not from including behavior that is potentially harmful, that is not
skipping to change at line 3032 skipping to change at page 76, line 22
consistent with the request method semantics. For example, it is consistent with the request method semantics. For example, it is
common for Web-based content editing software to use actions within common for Web-based content editing software to use actions within
query parameters, such as "page?do=delete". If the purpose of such a query parameters, such as "page?do=delete". If the purpose of such a
resource is to perform an unsafe action, then the resource owner MUST resource is to perform an unsafe action, then the resource owner MUST
disable or disallow that action when it is accessed using a safe disable or disallow that action when it is accessed using a safe
request method. Failure to do so will result in unfortunate side request method. Failure to do so will result in unfortunate side
effects when automated processes perform a GET on every URI reference effects when automated processes perform a GET on every URI reference
for the sake of link maintenance, pre-fetching, building a search for the sake of link maintenance, pre-fetching, building a search
index, etc. index, etc.
4.2.2. Idempotent Methods 7.2.2. Idempotent Methods
A request method is considered "idempotent" if the intended effect on A request method is considered "idempotent" if the intended effect on
the server of multiple identical requests with that method is the the server of multiple identical requests with that method is the
same as the effect for a single such request. Of the request methods same as the effect for a single such request. Of the request methods
defined by this specification, PUT, DELETE, and safe request methods defined by this specification, PUT, DELETE, and safe request methods
are idempotent. are idempotent.
Like the definition of safe, the idempotent property only applies to Like the definition of safe, the idempotent property only applies to
what has been requested by the user; a server is free to log each what has been requested by the user; a server is free to log each
request separately, retain a revision control history, or implement request separately, retain a revision control history, or implement
skipping to change at line 3054 skipping to change at page 76, line 44
Idempotent methods are distinguished because the request can be Idempotent methods are distinguished because the request can be
repeated automatically if a communication failure occurs before the repeated automatically if a communication failure occurs before the
client is able to read the server's response. For example, if a client is able to read the server's response. For example, if a
client sends a PUT request and the underlying connection is closed client sends a PUT request and the underlying connection is closed
before any response is received, then the client can establish a new before any response is received, then the client can establish a new
connection and retry the idempotent request. It knows that repeating connection and retry the idempotent request. It knows that repeating
the request will have the same intended effect, even if the original the request will have the same intended effect, even if the original
request succeeded, though the response might differ. request succeeded, though the response might differ.
A user agent MUST NOT automatically retry a request with a non- A client SHOULD NOT automatically retry a request with a non-
idempotent method unless it has some means to know that the request idempotent method unless it has some means to know that the request
semantics are actually idempotent, regardless of the method, or some semantics are actually idempotent, regardless of the method, or some
means to detect that the original request was never applied. means to detect that the original request was never applied.
For example, a user agent that knows (through design or For example, a user agent that knows (through design or
configuration) that a POST request to a given resource is safe can configuration) that a POST request to a given resource is safe can
repeat that request automatically. Likewise, a user agent designed repeat that request automatically. Likewise, a user agent designed
specifically to operate on a version control repository might be able specifically to operate on a version control repository might be able
to recover from partial failure conditions by checking the target to recover from partial failure conditions by checking the target
resource revision(s) after a failed connection, reverting or fixing resource revision(s) after a failed connection, reverting or fixing
any changes that were partially applied, and then automatically any changes that were partially applied, and then automatically
retrying the requests that failed. retrying the requests that failed.
Some clients use weaker signals to initiate automatic retries. For
example, when a POST request is sent, but the underlying transport
connection is closed before any part of the response is received.
Although this is commonly implemented, it is not recommended.
A proxy MUST NOT automatically retry non-idempotent requests. A A proxy MUST NOT automatically retry non-idempotent requests. A
client SHOULD NOT automatically retry a failed automatic retry. client SHOULD NOT automatically retry a failed automatic retry.
7.2.3. Methods and Caching 7.2.3. Methods and Caching
Request methods can be defined as "cacheable" to indicate that For a cache to store and use a response, the associated method needs
responses to them are allowed to be stored for future reuse; for to explicitly allow caching, and detail under what conditions a
specific requirements see [RFC7234]. In general, safe methods that response can be used to satisfy subsequent requests; a method
do not depend on a current or authoritative response are defined as definition which does not do so cannot be cached. For additional
cacheable; this specification defines GET, HEAD, and POST as requirements see [Caching].
cacheable, although the overwhelming majority of cache
implementations only support GET and HEAD.
4.3. Method Definitions This specification defines caching semantics for GET, HEAD, and POST,
although the overwhelming majority of cache implementations only
support GET and HEAD.
4.3.1. GET 7.3. Method Definitions
7.3.1. GET
The GET method requests transfer of a current selected representation The GET method requests transfer of a current selected representation
for the target resource. GET is the primary mechanism of information for the target resource. GET is the primary mechanism of information
retrieval and the focus of almost all performance optimizations. retrieval and the focus of almost all performance optimizations.
Hence, when people speak of retrieving some identifiable information Hence, when people speak of retrieving some identifiable information
via HTTP, they are generally referring to making a GET request. via HTTP, they are generally referring to making a GET request.
The GET method is specifically intended to reflect the quality of
"sameness" identified by the request URI as if it were referenced as
an ordinary hypertext link.
It is tempting to think of resource identifiers as remote file system It is tempting to think of resource identifiers as remote file system
pathnames and of representations as being a copy of the contents of pathnames and of representations as being a copy of the contents of
such files. In fact, that is how many resources are implemented (see such files. In fact, that is how many resources are implemented (see
Section 9.1 for related security considerations). However, there are Section 11.3 for related security considerations). However, there
no such limitations in practice. The HTTP interface for a resource are no such limitations in practice. The HTTP interface for a
is just as likely to be implemented as a tree of content objects, a resource is just as likely to be implemented as a tree of content
programmatic view on various database records, or a gateway to other objects, a programmatic view on various database records, or a
information systems. Even when the URI mapping mechanism is tied to gateway to other information systems. Even when the URI mapping
a file system, an origin server might be configured to execute the mechanism is tied to a file system, an origin server might be
files with the request as input and send the output as the configured to execute the files with the request as input and send
representation rather than transfer the files directly. Regardless, the output as the representation rather than transfer the files
only the origin server needs to know how each of its resource directly. Regardless, only the origin server needs to know how each
identifiers corresponds to an implementation and how each of its resource identifiers corresponds to an implementation and how
implementation manages to select and send a current representation of each implementation manages to select and send a current
the target resource in a response to GET. representation of the target resource in a response to GET.
A client can alter the semantics of GET to be a "range request", A client can alter the semantics of GET to be a "range request",
requesting transfer of only some part(s) of the selected requesting transfer of only some part(s) of the selected
representation, by sending a Range header field in the request representation, by sending a Range header field in the request
([RFC7233]). (Section 8.3).
A payload within a GET request message has no defined semantics; A client SHOULD NOT generate a body in a GET request. A payload
sending a payload body on a GET request might cause some existing received in a GET request has no defined semantics, cannot alter the
implementations to reject the request. meaning or target of the request, and might lead some implementations
to reject the request and close the connection because of its
potential as a request smuggling attack (Section 11.2 of
[Messaging]).
The response to a GET request is cacheable; a cache MAY use it to The response to a GET request is cacheable; a cache MAY use it to
satisfy subsequent GET and HEAD requests unless otherwise indicated satisfy subsequent GET and HEAD requests unless otherwise indicated
by the Cache-Control header field (Section 5.2 of [RFC7234]). by the Cache-Control header field (Section 5.2 of [Caching]). A
cache that receives a payload in a GET request is likely to ignore
that payload and cache regardless of the payload contents.
4.3.2. HEAD 7.3.2. HEAD
The HEAD method is identical to GET except that the server MUST NOT The HEAD method is identical to GET except that the server MUST NOT
send a message body in the response (i.e., the response terminates at send a message body in the response (i.e., the response terminates at
the end of the header section). The server SHOULD send the same the end of the header section). The server SHOULD send the same
header fields in response to a HEAD request as it would have sent if header fields in response to a HEAD request as it would have sent if
the request had been a GET, except that the payload header fields the request had been a GET, except that the payload header fields
(Section 3.3) MAY be omitted. This method can be used for obtaining (Section 6.3) MAY be omitted. This method can be used for obtaining
metadata about the selected representation without transferring the metadata about the selected representation without transferring the
representation data and is often used for testing hypertext links for representation data and is often used for testing hypertext links for
validity, accessibility, and recent modification. validity, accessibility, and recent modification.
A payload within a HEAD request message has no defined semantics; A payload within a HEAD request message has no defined semantics;
sending a payload body on a HEAD request might cause some existing sending a payload body on a HEAD request might cause some existing
implementations to reject the request. implementations to reject the request.
The response to a HEAD request is cacheable; a cache MAY use it to The response to a HEAD request is cacheable; a cache MAY use it to
satisfy subsequent HEAD requests unless otherwise indicated by the satisfy subsequent HEAD requests unless otherwise indicated by the
Cache-Control header field (Section 5.2 of [RFC7234]). A HEAD Cache-Control header field (Section 5.2 of [Caching]). A HEAD
response might also have an effect on previously cached responses to response might also have an effect on previously cached responses to
GET; see Section 4.3.5 of [RFC7234]. GET; see Section 4.3.5 of [Caching].
4.3.3. POST 7.3.3. POST
The POST method requests that the target resource process the The POST method requests that the target resource process the
representation enclosed in the request according to the resource's representation enclosed in the request according to the resource's
own specific semantics. For example, POST is used for the following own specific semantics. For example, POST is used for the following
functions (among others): functions (among others):
o Providing a block of data, such as the fields entered into an HTML o Providing a block of data, such as the fields entered into an HTML
form, to a data-handling process; form, to a data-handling process;
o Posting a message to a bulletin board, newsgroup, mailing list, o Posting a message to a bulletin board, newsgroup, mailing list,
skipping to change at line 3171 skipping to change at page 79, line 34
appropriate status code depending on the result of processing the appropriate status code depending on the result of processing the
POST request; almost all of the status codes defined by this POST request; almost all of the status codes defined by this
specification might be received in a response to POST (the exceptions specification might be received in a response to POST (the exceptions
being 206 (Partial Content), 304 (Not Modified), and 416 (Range Not being 206 (Partial Content), 304 (Not Modified), and 416 (Range Not
Satisfiable)). Satisfiable)).
If one or more resources has been created on the origin server as a If one or more resources has been created on the origin server as a
result of successfully processing a POST request, the origin server result of successfully processing a POST request, the origin server
SHOULD send a 201 (Created) response containing a Location header SHOULD send a 201 (Created) response containing a Location header
field that provides an identifier for the primary resource created field that provides an identifier for the primary resource created
(Section 7.1.2) and a representation that describes the status of the (Section 10.1.2) and a representation that describes the status of
request while referring to the new resource(s). the request while referring to the new resource(s).
Responses to POST requests are only cacheable when they include Responses to POST requests are only cacheable when they include
explicit freshness information (see Section 4.2.1 of [RFC7234]). explicit freshness information (see Section 4.2.1 of [Caching]) and a
However, POST caching is not widely implemented. For cases where an
origin server wishes the client to be able to cache the result of a
POST in a way that can be reused by a later GET, the origin server
MAY send a 200 (OK) response containing the result and a
Content-Location header field that has the same value as the POST's Content-Location header field that has the same value as the POST's
effective request URI (Section 3.1.4.2). effective request URI (Section 6.2.5). A cached POST response can be
reused to satisfy a later GET or HEAD request, but not a POST
request, since POST is required to be written through to the origin
server, because it is unsafe; see Section 4 of [Caching].
If the result of processing a POST would be equivalent to a If the result of processing a POST would be equivalent to a
representation of an existing resource, an origin server MAY redirect representation of an existing resource, an origin server MAY redirect
the user agent to that resource by sending a 303 (See Other) response the user agent to that resource by sending a 303 (See Other) response
with the existing resource's identifier in the Location field. This with the existing resource's identifier in the Location field. This
has the benefits of providing the user agent a resource identifier has the benefits of providing the user agent a resource identifier
and transferring the representation via a method more amenable to and transferring the representation via a method more amenable to
shared caching, though at the cost of an extra request if the user shared caching, though at the cost of an extra request if the user
agent does not already have the representation cached. agent does not already have the representation cached.
4.3.4. PUT 7.3.4. PUT
The PUT method requests that the state of the target resource be The PUT method requests that the state of the target resource be
created or replaced with the state defined by the representation created or replaced with the state defined by the representation
enclosed in the request message payload. A successful PUT of a given enclosed in the request message payload. A successful PUT of a given
representation would suggest that a subsequent GET on that same representation would suggest that a subsequent GET on that same
target resource will result in an equivalent representation being target resource will result in an equivalent representation being
sent in a 200 (OK) response. However, there is no guarantee that sent in a 200 (OK) response. However, there is no guarantee that
such a state change will be observable, since the target resource such a state change will be observable, since the target resource
might be acted upon by other user agents in parallel, or might be might be acted upon by other user agents in parallel, or might be
subject to dynamic processing by the origin server, before any subject to dynamic processing by the origin server, before any
skipping to change at line 3216 skipping to change at page 80, line 29
If the target resource does not have a current representation and the If the target resource does not have a current representation and the
PUT successfully creates one, then the origin server MUST inform the PUT successfully creates one, then the origin server MUST inform the
user agent by sending a 201 (Created) response. If the target user agent by sending a 201 (Created) response. If the target
resource does have a current representation and that representation resource does have a current representation and that representation
is successfully modified in accordance with the state of the enclosed is successfully modified in accordance with the state of the enclosed
representation, then the origin server MUST send either a 200 (OK) or representation, then the origin server MUST send either a 200 (OK) or
a 204 (No Content) response to indicate successful completion of the a 204 (No Content) response to indicate successful completion of the
request. request.
An origin server SHOULD ignore unrecognized header fields received in An origin server SHOULD ignore unrecognized header and trailer fields
a PUT request (i.e., do not save them as part of the resource state). received in a PUT request (i.e., do not save them as part of the
resource state).
An origin server SHOULD verify that the PUT representation is An origin server SHOULD verify that the PUT representation is
consistent with any constraints the server has for the target consistent with any constraints the server has for the target
resource that cannot or will not be changed by the PUT. This is resource that cannot or will not be changed by the PUT. This is
particularly important when the origin server uses internal particularly important when the origin server uses internal
configuration information related to the URI in order to set the configuration information related to the URI in order to set the
values for representation metadata on GET responses. When a PUT values for representation metadata on GET responses. When a PUT
representation is inconsistent with the target resource, the origin representation is inconsistent with the target resource, the origin
server SHOULD either make them consistent, by transforming the server SHOULD either make them consistent, by transforming the
representation or changing the resource configuration, or respond representation or changing the resource configuration, or respond
skipping to change at line 3259 skipping to change at page 81, line 24
agent request and the semantics of the origin server response. It agent request and the semantics of the origin server response. It
does not define what a resource might be, in any sense of that word, does not define what a resource might be, in any sense of that word,
beyond the interface provided via HTTP. It does not define how beyond the interface provided via HTTP. It does not define how
resource state is "stored", nor how such storage might change as a resource state is "stored", nor how such storage might change as a
result of a change in resource state, nor how the origin server result of a change in resource state, nor how the origin server
translates resource state into representations. Generally speaking, translates resource state into representations. Generally speaking,
all implementation details behind the resource interface are all implementation details behind the resource interface are
intentionally hidden by the server. intentionally hidden by the server.
An origin server MUST NOT send a validator header field An origin server MUST NOT send a validator header field
(Section 7.2), such as an ETag or Last-Modified field, in a (Section 10.2), such as an ETag or Last-Modified field, in a
successful response to PUT unless the request's representation data successful response to PUT unless the request's representation data
was saved without any transformation applied to the body (i.e., the was saved without any transformation applied to the body (i.e., the
resource's new representation data is identical to the representation resource's new representation data is identical to the representation
data received in the PUT request) and the validator field value data received in the PUT request) and the validator field value
reflects the new representation. This requirement allows a user reflects the new representation. This requirement allows a user
agent to know when the representation body it has in memory remains agent to know when the representation body it has in memory remains
current as a result of the PUT, thus not in need of being retrieved current as a result of the PUT, thus not in need of being retrieved
again from the origin server, and that the new validator(s) received again from the origin server, and that the new validator(s) received
in the response can be used for future conditional requests in order in the response can be used for future conditional requests in order
to prevent accidental overwrites (Section 5.2). to prevent accidental overwrites (Section 8.2).
The fundamental difference between the POST and PUT methods is The fundamental difference between the POST and PUT methods is
highlighted by the different intent for the enclosed representation. highlighted by the different intent for the enclosed representation.
The target resource in a POST request is intended to handle the The target resource in a POST request is intended to handle the
enclosed representation according to the resource's own semantics, enclosed representation according to the resource's own semantics,
whereas the enclosed representation in a PUT request is defined as whereas the enclosed representation in a PUT request is defined as
replacing the state of the target resource. Hence, the intent of PUT replacing the state of the target resource. Hence, the intent of PUT
is idempotent and visible to intermediaries, even though the exact is idempotent and visible to intermediaries, even though the exact
effect is only known by the origin server. effect is only known by the origin server.
skipping to change at line 3303 skipping to change at page 82, line 20
identifying "the current version" (a resource) that is separate from identifying "the current version" (a resource) that is separate from
the URIs identifying each particular version (different resources the URIs identifying each particular version (different resources
that at one point shared the same state as the current version that at one point shared the same state as the current version
resource). A successful PUT request on "the current version" URI resource). A successful PUT request on "the current version" URI
might therefore create a new version resource in addition to changing might therefore create a new version resource in addition to changing
the state of the target resource, and might also cause links to be the state of the target resource, and might also cause links to be
added between the related resources. added between the related resources.
An origin server that allows PUT on a given target resource MUST send An origin server that allows PUT on a given target resource MUST send
a 400 (Bad Request) response to a PUT request that contains a a 400 (Bad Request) response to a PUT request that contains a
Content-Range header field (Section 4.2 of [RFC7233]), since the Content-Range header field (Section 6.3.4), since the payload is
payload is likely to be partial content that has been mistakenly PUT likely to be partial content that has been mistakenly PUT as a full
as a full representation. Partial content updates are possible by representation. Partial content updates are possible by targeting a
targeting a separately identified resource with state that overlaps a separately identified resource with state that overlaps a portion of
portion of the larger resource, or by using a different method that the larger resource, or by using a different method that has been
has been specifically defined for partial updates (for example, the specifically defined for partial updates (for example, the PATCH
PATCH method defined in [RFC5789]). method defined in [RFC5789]).
Responses to the PUT method are not cacheable. If a successful PUT Responses to the PUT method are not cacheable. If a successful PUT
request passes through a cache that has one or more stored responses request passes through a cache that has one or more stored responses
for the effective request URI, those stored responses will be for the effective request URI, those stored responses will be
invalidated (see Section 4.4 of [RFC7234]). invalidated (see Section 4.4 of [Caching]).
4.3.5. DELETE 7.3.5. DELETE
The DELETE method requests that the origin server remove the The DELETE method requests that the origin server remove the
association between the target resource and its current association between the target resource and its current
functionality. In effect, this method is similar to the rm command functionality. In effect, this method is similar to the rm command
in UNIX: it expresses a deletion operation on the URI mapping of the in UNIX: it expresses a deletion operation on the URI mapping of the
origin server rather than an expectation that the previously origin server rather than an expectation that the previously
associated information be deleted. associated information be deleted.
If the target resource has one or more current representations, they If the target resource has one or more current representations, they
might or might not be destroyed by the origin server, and the might or might not be destroyed by the origin server, and the
skipping to change at line 3349 skipping to change at page 83, line 18
previously created using a PUT request, or identified via the previously created using a PUT request, or identified via the
Location header field after a 201 (Created) response to a POST Location header field after a 201 (Created) response to a POST
request, might allow a corresponding DELETE request to undo those request, might allow a corresponding DELETE request to undo those
actions. Similarly, custom user agent implementations that implement actions. Similarly, custom user agent implementations that implement
an authoring function, such as revision control clients using HTTP an authoring function, such as revision control clients using HTTP
for remote operations, might use DELETE based on an assumption that for remote operations, might use DELETE based on an assumption that
the server's URI space has been crafted to correspond to a version the server's URI space has been crafted to correspond to a version
repository. repository.
If a DELETE method is successfully applied, the origin server SHOULD If a DELETE method is successfully applied, the origin server SHOULD
send a 202 (Accepted) status code if the action will likely succeed send
but has not yet been enacted, a 204 (No Content) status code if the
action has been enacted and no further information is to be supplied,
or a 200 (OK) status code if the action has been enacted and the
response message includes a representation describing the status.
A payload within a DELETE request message has no defined semantics; o a 202 (Accepted) status code if the action will likely succeed but
sending a payload body on a DELETE request might cause some existing has not yet been enacted,
o a 204 (No Content) status code if the action has been enacted and
no further information is to be supplied, or
o a 200 (OK) status code if the action has been enacted and the
response message includes a representation describing the status.
A client SHOULD NOT generate a body in a DELETE request. A payload
received in a DELETE request has no defined semantics, cannot alter
the meaning or target of the request, and might lead some
implementations to reject the request. implementations to reject the request.
Responses to the DELETE method are not cacheable. If a DELETE Responses to the DELETE method are not cacheable. If a successful
request passes through a cache that has one or more stored responses DELETE request passes through a cache that has one or more stored
for the effective request URI, those stored responses will be responses for the effective request URI, those stored responses will
invalidated (see Section 4.4 of [RFC7234]). be invalidated (see Section 4.4 of [Caching]).
4.3.6. CONNECT 7.3.6. CONNECT
The CONNECT method requests that the recipient establish a tunnel to The CONNECT method requests that the recipient establish a tunnel to
the destination origin server identified by the request-target and, the destination origin server identified by the request-target and,
if successful, thereafter restrict its behavior to blind forwarding if successful, thereafter restrict its behavior to blind forwarding
of packets, in both directions, until the tunnel is closed. Tunnels of packets, in both directions, until the tunnel is closed. Tunnels
are commonly used to create an end-to-end virtual connection, through are commonly used to create an end-to-end virtual connection, through
one or more proxies, which can then be secured using TLS (Transport one or more proxies, which can then be secured using TLS (Transport
Layer Security, [RFC5246]). Layer Security, [RFC8446]).
CONNECT is intended only for use in requests to a proxy. An origin CONNECT is intended only for use in requests to a proxy. An origin
server that receives a CONNECT request for itself MAY respond with a server that receives a CONNECT request for itself MAY respond with a
2xx (Successful) status code to indicate that a connection is 2xx (Successful) status code to indicate that a connection is
established. However, most origin servers do not implement CONNECT. established. However, most origin servers do not implement CONNECT.
A client sending a CONNECT request MUST send the authority form of A client sending a CONNECT request MUST send the authority form of
request-target (Section 5.3 of [RFC7230]); i.e., the request-target request-target (Section 3.2 of [Messaging]); i.e., the request-target
consists of only the host name and port number of the tunnel consists of only the host name and port number of the tunnel
destination, separated by a colon. For example, destination, separated by a colon. For example,
CONNECT server.example.com:80 HTTP/1.1 CONNECT server.example.com:80 HTTP/1.1
Host: server.example.com:80 Host: server.example.com:80
The recipient proxy can establish a tunnel either by directly The recipient proxy can establish a tunnel either by directly
connecting to the request-target or, if configured to use another connecting to the request-target or, if configured to use another
proxy, by forwarding the CONNECT request to the next inbound proxy. proxy, by forwarding the CONNECT request to the next inbound proxy.
Any 2xx (Successful) response indicates that the sender (and all Any 2xx (Successful) response indicates that the sender (and all
skipping to change at line 3431 skipping to change at page 85, line 11
fields in a 2xx (Successful) response to CONNECT. A client MUST fields in a 2xx (Successful) response to CONNECT. A client MUST
ignore any Content-Length or Transfer-Encoding header fields received ignore any Content-Length or Transfer-Encoding header fields received
in a successful response to CONNECT. in a successful response to CONNECT.
A payload within a CONNECT request message has no defined semantics; A payload within a CONNECT request message has no defined semantics;
sending a payload body on a CONNECT request might cause some existing sending a payload body on a CONNECT request might cause some existing
implementations to reject the request. implementations to reject the request.
Responses to the CONNECT method are not cacheable. Responses to the CONNECT method are not cacheable.
4.3.7. OPTIONS 7.3.7. OPTIONS
The OPTIONS method requests information about the communication The OPTIONS method requests information about the communication
options available for the target resource, at either the origin options available for the target resource, at either the origin
server or an intervening intermediary. This method allows a client server or an intervening intermediary. This method allows a client
to determine the options and/or requirements associated with a to determine the options and/or requirements associated with a
resource, or the capabilities of a server, without implying a resource, or the capabilities of a server, without implying a
resource action. resource action.
An OPTIONS request with an asterisk ("*") as the request-target An OPTIONS request with an asterisk ("*") as the request-target
(Section 5.3 of [RFC7230]) applies to the server in general rather (Section 3.2 of [Messaging]) applies to the server in general rather
than to a specific resource. Since a server's communication options than to a specific resource. Since a server's communication options
typically depend on the resource, the "*" request is only useful as a typically depend on the resource, the "*" request is only useful as a
"ping" or "no-op" type of method; it does nothing beyond allowing the "ping" or "no-op" type of method; it does nothing beyond allowing the
client to test the capabilities of the server. For example, this can client to test the capabilities of the server. For example, this can
be used to test a proxy for HTTP/1.1 conformance (or lack thereof). be used to test a proxy for HTTP/1.1 conformance (or lack thereof).
If the request-target is not an asterisk, the OPTIONS request applies If the request-target is not an asterisk, the OPTIONS request applies
to the options that are available when communicating with the target to the options that are available when communicating with the target
resource. resource.
A server generating a successful response to OPTIONS SHOULD send any A server generating a successful response to OPTIONS SHOULD send any
header fields that might indicate optional features implemented by header that might indicate optional features implemented by the
the server and applicable to the target resource (e.g., Allow), server and applicable to the target resource (e.g., Allow), including
including potential extensions not defined by this specification. potential extensions not defined by this specification. The response
The response payload, if any, might also describe the communication payload, if any, might also describe the communication options in a
options in a machine or human-readable representation. A standard machine or human-readable representation. A standard format for such
format for such a representation is not defined by this a representation is not defined by this specification, but might be
specification, but might be defined by future extensions to HTTP. A defined by future extensions to HTTP.
server MUST generate a Content-Length field with a value of "0" if no
payload body is to be sent in the response.
A client MAY send a Max-Forwards header field in an OPTIONS request A client MAY send a Max-Forwards header field in an OPTIONS request
to target a specific recipient in the request chain (see to target a specific recipient in the request chain (see
Section 5.1.2). A proxy MUST NOT generate a Max-Forwards header Section 8.1.2). A proxy MUST NOT generate a Max-Forwards header
field while forwarding a request unless that request was received field while forwarding a request unless that request was received
with a Max-Forwards field. with a Max-Forwards field.
A client that generates an OPTIONS request containing a payload body A client that generates an OPTIONS request containing a payload body
MUST send a valid Content-Type header field describing the MUST send a valid Content-Type header field describing the
representation media type. Although this specification does not representation media type. Note that this specification does not
define any use for such a payload, future extensions to HTTP might define any use for such a payload.
use the OPTIONS body to make more detailed queries about the target
resource.
Responses to the OPTIONS method are not cacheable. Responses to the OPTIONS method are not cacheable.
4.3.8. TRACE 7.3.8. TRACE
The TRACE method requests a remote, application-level loop-back of The TRACE method requests a remote, application-level loop-back of
the request message. The final recipient of the request SHOULD the request message. The final recipient of the request SHOULD
reflect the message received, excluding some fields described below, reflect the message received, excluding some fields described below,
back to the client as the message body of a 200 (OK) response with a back to the client as the message body of a 200 (OK) response with a
Content-Type of "message/http" (Section 8.3.1 of [RFC7230]). The Content-Type of "message/http" (Section 10.1 of [Messaging]). The
final recipient is either the origin server or the first server to final recipient is either the origin server or the first server to
receive a Max-Forwards value of zero (0) in the request receive a Max-Forwards value of zero (0) in the request
(Section 5.1.2). (Section 8.1.2).
A client MUST NOT generate header fields in a TRACE request A client MUST NOT generate fields in a TRACE request containing
containing sensitive data that might be disclosed by the response. sensitive data that might be disclosed by the response. For example,
For example, it would be foolish for a user agent to send stored user it would be foolish for a user agent to send stored user credentials
credentials [RFC7235] or cookies [RFC6265] in a TRACE request. The Section 8.5 or cookies [RFC6265] in a TRACE request. The final
final recipient of the request SHOULD exclude any request header recipient of the request SHOULD exclude any request fields that are
fields that are likely to contain sensitive data when that recipient likely to contain sensitive data when that recipient generates the
generates the response body. response body.
TRACE allows the client to see what is being received at the other TRACE allows the client to see what is being received at the other
end of the request chain and use that data for testing or diagnostic end of the request chain and use that data for testing or diagnostic
information. The value of the Via header field (Section 5.7.1 of information. The value of the Via header field (Section 5.7.1) is of
[RFC7230]) is of particular interest, since it acts as a trace of the particular interest, since it acts as a trace of the request chain.
request chain. Use of the Max-Forwards header field allows the Use of the Max-Forwards header field allows the client to limit the
client to limit the length of the request chain, which is useful for length of the request chain, which is useful for testing a chain of
testing a chain of proxies forwarding messages in an infinite loop. proxies forwarding messages in an infinite loop.
A client MUST NOT send a message body in a TRACE request. A client MUST NOT send a message body in a TRACE request.
Responses to the TRACE method are not cacheable. Responses to the TRACE method are not cacheable.
X.X. [Method Extensibility] 7.4. Method Extensibility
Additional methods, outside the scope of this specification, have Additional methods, outside the scope of this specification, have
been standardized for use in HTTP. All such methods ought to be been specified for use in HTTP. All such methods ought to be
registered within the "Hypertext Transfer Protocol (HTTP) Method registered within the "Hypertext Transfer Protocol (HTTP) Method
Registry" maintained by IANA, as defined in Section 8.1. Registry".
8.1. Method Registry
The "Hypertext Transfer Protocol (HTTP) Method Registry" defines the 7.4.1. Method Registry
namespace for the request method token (Section 4). The method
registry has been created and is now maintained at
<http://www.iana.org/assignments/http-methods>.
8.1.1. Procedure The "Hypertext Transfer Protocol (HTTP) Method Registry", maintained
by IANA at <https://www.iana.org/assignments/http-methods>, registers
method names.
HTTP method registrations MUST include the following fields: HTTP method registrations MUST include the following fields:
o Method Name (see Section 4) o Method Name (see Section 7)
o Safe ("yes" or "no", see Section 7.2.1)
o Safe ("yes" or "no", see Section 4.2.1)
o Idempotent ("yes" or "no", see Section 4.2.2) o Idempotent ("yes" or "no", see Section 7.2.2)
o Pointer to specification text o Pointer to specification text
Values to be added to this namespace require IETF Review (see Values to be added to this namespace require IETF Review (see
[RFC5226], Section 4.1). [RFC8126], Section 4.8).
8.1.2. Considerations for New Methods 7.4.2. Considerations for New Methods
Standardized methods are generic; that is, they are potentially Standardized methods are generic; that is, they are potentially
applicable to any resource, not just one particular media type, kind applicable to any resource, not just one particular media type, kind
of resource, or application. As such, it is preferred that new of resource, or application. As such, it is preferred that new
methods be registered in a document that isn't specific to a single methods be registered in a document that isn't specific to a single
application or data format, since orthogonal technologies deserve application or data format, since orthogonal technologies deserve
orthogonal specification. orthogonal specification.
Since message parsing (Section 3.3 of [RFC7230]) needs to be Since message parsing (Section 6 of [Messaging]) needs to be
independent of method semantics (aside from responses to HEAD), independent of method semantics (aside from responses to HEAD),
definitions of new methods cannot change the parsing algorithm or definitions of new methods cannot change the parsing algorithm or
prohibit the presence of a message body on either the request or the prohibit the presence of a message body on either the request or the
response message. Definitions of new methods can specify that only a response message. Definitions of new methods can specify that only a
zero-length message body is allowed by requiring a Content-Length zero-length message body is allowed by requiring a Content-Length
header field with a value of "0". header field with a value of "0".
A new method definition needs to indicate whether it is safe A new method definition needs to indicate whether it is safe
(Section 4.2.1), idempotent (Section 4.2.2), cacheable (Section 7.2.1), idempotent (Section 7.2.2), cacheable
(Section 4.2.3), what semantics are to be associated with the payload (Section 7.2.3), what semantics are to be associated with the payload
body if any is present in the request and what refinements the method body if any is present in the request and what refinements the method
makes to header field or status code semantics. If the new method is makes to header field or status code semantics. If the new method is
cacheable, its definition ought to describe how, and under what cacheable, its definition ought to describe how, and under what
conditions, a cache can store a response and use it to satisfy a conditions, a cache can store a response and use it to satisfy a
subsequent request. The new method ought to describe whether it can subsequent request. The new method ought to describe whether it can
be made conditional (Section 5.2) and, if so, how a server responds be made conditional (Section 8.2) and, if so, how a server responds
when the condition is false. Likewise, if the new method might have when the condition is false. Likewise, if the new method might have
some use for partial response semantics ([RFC7233]), it ought to some use for partial response semantics (Section 8.3), it ought to
document this, too. document this, too.
Note: Avoid defining a method name that starts with "M-", since Note: Avoid defining a method name that starts with "M-", since
that prefix might be misinterpreted as having the semantics that prefix might be misinterpreted as having the semantics
assigned to it by [RFC2774]. assigned to it by [RFC2774].
5. Request Header Fields 8. Request Header Fields
A client sends request header fields to provide more information A client sends request header fields to provide more information
about the request context, make the request conditional based on the about the request context, make the request conditional based on the
target resource state, suggest preferred formats for the response, target resource state, suggest preferred formats for the response,
supply authentication credentials, or modify the expected request supply authentication credentials, or modify the expected request
processing. These fields act as request modifiers, similar to the processing. These fields act as request modifiers, similar to the
parameters on a programming language method invocation. parameters on a programming language method invocation.
5.1. Controls 8.1. Controls
Controls are request header fields that direct specific handling of Controls are request header fields that direct specific handling of
the request. the request.
+-------------------+--------------------------+ +---------------+----------------------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+-------------------+--------------------------+ +---------------+----------------------------+
| Cache-Control | Section 5.2 of [RFC7234] | | Cache-Control | Section 5.2 of [Caching] |
| Expect | Section 5.1.1 | | Expect | Section 8.1.1 |
| Host | Section 5.4 of [RFC7230] | | Host | Section 5.6 |
| Max-Forwards | Section 5.1.2 | | Max-Forwards | Section 8.1.2 |
| Pragma | Section 5.4 of [RFC7234] | | Pragma | Section 5.4 of [Caching] |
| Range | Section 3.1 of [RFC7233] | | TE | Section 7.4 of [Messaging] |
| TE | Section 4.3 of [RFC7230] | +---------------+----------------------------+
+-------------------+--------------------------+
5.1.1. Expect 8.1.1. Expect
The "Expect" header field in a request indicates a certain set of The "Expect" header field in a request indicates a certain set of
behaviors (expectations) that need to be supported by the server in behaviors (expectations) that need to be supported by the server in
order to properly handle this request. The only such expectation order to properly handle this request. The only such expectation
defined by this specification is 100-continue. defined by this specification is 100-continue.
Expect = "100-continue" Expect = "100-continue"
The Expect field-value is case-insensitive. The Expect field value is case-insensitive.
A server that receives an Expect field-value other than 100-continue A server that receives an Expect field value other than 100-continue
MAY respond with a 417 (Expectation Failed) status code to indicate MAY respond with a 417 (Expectation Failed) status code to indicate
that the unexpected expectation cannot be met. that the unexpected expectation cannot be met.
A 100-continue expectation informs recipients that the client is A 100-continue expectation informs recipients that the client is
about to send a (presumably large) message body in this request and about to send a (presumably large) message body in this request and
wishes to receive a 100 (Continue) interim response if the wishes to receive a 100 (Continue) interim response if the request-
request-line and header fields are not sufficient to cause an line and header fields are not sufficient to cause an immediate
immediate success, redirect, or error response. This allows the success, redirect, or error response. This allows the client to wait
client to wait for an indication that it is worthwhile to send the for an indication that it is worthwhile to send the message body
message body before actually doing so, which can improve efficiency before actually doing so, which can improve efficiency when the
when the message body is huge or when the client anticipates that an message body is huge or when the client anticipates that an error is
error is likely (e.g., when sending a state-changing method, for the likely (e.g., when sending a state-changing method, for the first
first time, without previously verified authentication credentials). time, without previously verified authentication credentials).
For example, a request that begins with For example, a request that begins with
PUT /somewhere/fun HTTP/1.1 PUT /somewhere/fun HTTP/1.1
Host: origin.example.com Host: origin.example.com
Content-Type: video/h264 Content-Type: video/h264
Content-Length: 1234567890987 Content-Length: 1234567890987
Expect: 100-continue Expect: 100-continue
allows the origin server to immediately respond with an error allows the origin server to immediately respond with an error
message, such as 401 (Unauthorized) or 405 (Method Not Allowed), message, such as 401 (Unauthorized) or 405 (Method Not Allowed),
before the client starts filling the pipes with an unnecessary data before the client starts filling the pipes with an unnecessary data
transfer. transfer.
skipping to change at line 3674 skipping to change at page 90, line 6
o A server MAY omit sending a 100 (Continue) response if it has o A server MAY omit sending a 100 (Continue) response if it has
already received some or all of the message body for the already received some or all of the message body for the
corresponding request, or if the framing indicates that there is corresponding request, or if the framing indicates that there is
no message body. no message body.
o A server that sends a 100 (Continue) response MUST ultimately send o A server that sends a 100 (Continue) response MUST ultimately send
a final status code, once the message body is received and a final status code, once the message body is received and
processed, unless the connection is closed prematurely. processed, unless the connection is closed prematurely.
o A server that responds with a final status code before reading the o A server that responds with a final status code before reading the
entire message body SHOULD indicate in that response whether it entire request payload body SHOULD indicate whether it intends to
intends to close the connection or continue reading and discarding close the connection (see Section 9.7 of [Messaging]) or continue
the request message (see Section 6.6 of [RFC7230]). reading the payload body.
An origin server MUST, upon receiving an HTTP/1.1 (or later) An origin server MUST, upon receiving an HTTP/1.1 (or later) request-
request-line and a complete header section that contains a line and a complete header section that contains a 100-continue
100-continue expectation and indicates a request message body will expectation and indicates a request message body will follow, either
follow, either send an immediate response with a final status code, send an immediate response with a final status code, if that status
if that status can be determined by examining just the request-line can be determined by examining just the request-line and header
and header fields, or send an immediate 100 (Continue) response to fields, or send an immediate 100 (Continue) response to encourage the
encourage the client to send the request's message body. The origin client to send the request's message body. The origin server MUST
server MUST NOT wait for the message body before sending the 100 NOT wait for the message body before sending the 100 (Continue)
(Continue) response. response.
A proxy MUST, upon receiving an HTTP/1.1 (or later) request-line and A proxy MUST, upon receiving an HTTP/1.1 (or later) request-line and
a complete header section that contains a 100-continue expectation a complete header section that contains a 100-continue expectation
and indicates a request message body will follow, either send an and indicates a request message body will follow, either send an
immediate response with a final status code, if that status can be immediate response with a final status code, if that status can be
determined by examining just the request-line and header fields, or determined by examining just the request-line and header fields, or
begin forwarding the request toward the origin server by sending a begin forwarding the request toward the origin server by sending a
corresponding request-line and header section to the next inbound corresponding request-line and header section to the next inbound
server. If the proxy believes (from configuration or past server. If the proxy believes (from configuration or past
interaction) that the next inbound server only supports HTTP/1.0, the interaction) that the next inbound server only supports HTTP/1.0, the
skipping to change at line 3710 skipping to change at page 90, line 42
Note: The Expect header field was added after the original Note: The Expect header field was added after the original
publication of HTTP/1.1 [RFC2068] as both the means to request an publication of HTTP/1.1 [RFC2068] as both the means to request an
interim 100 (Continue) response and the general mechanism for interim 100 (Continue) response and the general mechanism for
indicating must-understand extensions. However, the extension indicating must-understand extensions. However, the extension
mechanism has not been used by clients and the must-understand mechanism has not been used by clients and the must-understand
requirements have not been implemented by many servers, rendering requirements have not been implemented by many servers, rendering
the extension mechanism useless. This specification has removed the extension mechanism useless. This specification has removed
the extension mechanism in order to simplify the definition and the extension mechanism in order to simplify the definition and
processing of 100-continue. processing of 100-continue.
5.1.2. Max-Forwards 8.1.2. Max-Forwards
The "Max-Forwards" header field provides a mechanism with the TRACE The "Max-Forwards" header field provides a mechanism with the TRACE
(Section 4.3.8) and OPTIONS (Section 4.3.7) request methods to limit (Section 7.3.8) and OPTIONS (Section 7.3.7) request methods to limit
the number of times that the request is forwarded by proxies. This the number of times that the request is forwarded by proxies. This
can be useful when the client is attempting to trace a request that can be useful when the client is attempting to trace a request that
appears to be failing or looping mid-chain. appears to be failing or looping mid-chain.
Max-Forwards = 1*DIGIT Max-Forwards = 1*DIGIT
The Max-Forwards value is a decimal integer indicating the remaining The Max-Forwards value is a decimal integer indicating the remaining
number of times this request message can be forwarded. number of times this request message can be forwarded.
Each intermediary that receives a TRACE or OPTIONS request containing Each intermediary that receives a TRACE or OPTIONS request containing
a Max-Forwards header field MUST check and update its value prior to a Max-Forwards header field MUST check and update its value prior to
forwarding the request. If the received value is zero (0), the forwarding the request. If the received value is zero (0), the
intermediary MUST NOT forward the request; instead, the intermediary intermediary MUST NOT forward the request; instead, the intermediary
MUST respond as the final recipient. If the received Max-Forwards MUST respond as the final recipient. If the received Max-Forwards
value is greater than zero, the intermediary MUST generate an updated value is greater than zero, the intermediary MUST generate an updated
Max-Forwards field in the forwarded message with a field-value that Max-Forwards field in the forwarded message with a field value that
is the lesser of a) the received value decremented by one (1) or b) is the lesser of a) the received value decremented by one (1) or b)
the recipient's maximum supported value for Max-Forwards. the recipient's maximum supported value for Max-Forwards.
A recipient MAY ignore a Max-Forwards header field received with any A recipient MAY ignore a Max-Forwards header field received with any
other request methods. other request methods.
5.2. Conditionals 8.2. Preconditions
Conditional requests are HTTP requests [RFC7231] that include one or
more header fields indicating a precondition to be tested before
applying the method semantics to the target resource. This document
defines the HTTP/1.1 conditional request mechanisms in terms of the
architecture, syntax notation, and conformance criteria defined in
[RFC7230].
3. Precondition Header Fields
This section defines the syntax and semantics of HTTP/1.1 header A conditional request is an HTTP request with one or more request
fields for applying preconditions on requests. Section 5 defines header fields that indicate a precondition to be tested before
when the preconditions are applied. Section 6 defines the order of applying the request method to the target resource. Section 8.2.1
evaluation when more than one precondition is present. defines when preconditions are applied. Section 8.2.2 defines the
order of evaluation when more than one precondition is present.
Conditional GET requests are the most efficient mechanism for HTTP Conditional GET requests are the most efficient mechanism for HTTP
cache updates [RFC7234]. Conditionals can also be applied to cache updates [Caching]. Conditionals can also be applied to state-
state-changing methods, such as PUT and DELETE, to prevent the "lost changing methods, such as PUT and DELETE, to prevent the "lost
update" problem: one client accidentally overwriting the work of update" problem: one client accidentally overwriting the work of
another client that has been acting in parallel. another client that has been acting in parallel.
Conditional request preconditions are based on the state of the Conditional request preconditions are based on the state of the
target resource as a whole (its current value set) or the state as target resource as a whole (its current value set) or the state as
observed in a previously obtained representation (one value in that observed in a previously obtained representation (one value in that
set). A resource might have multiple current representations, each set). A resource might have multiple current representations, each
with its own observable state. The conditional request mechanisms with its own observable state. The conditional request mechanisms
assume that the mapping of requests to a "selected representation" assume that the mapping of requests to a "selected representation"
(Section 3 of [RFC7231]) will be consistent over time if the server (Section 6) will be consistent over time if the server intends to
intends to take advantage of conditionals. Regardless, if the take advantage of conditionals. Regardless, if the mapping is
mapping is inconsistent and the server is unable to select the inconsistent and the server is unable to select the appropriate
appropriate representation, then no harm will result when the representation, then no harm will result when the precondition
precondition evaluates to false. evaluates to false.
The conditional request preconditions defined by this specification
(Section 3) are evaluated when applicable to the recipient
(Section 5) according to their order of precedence (Section 6).
The HTTP conditional request header fields [RFC7232] allow a client The following request header fields allow a client to place a
to place a precondition on the state of the target resource, so that precondition on the state of the target resource, so that the action
the action corresponding to the method semantics will not be applied corresponding to the method semantics will not be applied if the
if the precondition evaluates to false. Each precondition defined by precondition evaluates to false. Each precondition defined by this
this specification consists of a comparison between a set of specification consists of a comparison between a set of validators
validators obtained from prior representations of the target resource obtained from prior representations of the target resource to the
to the current state of validators for the selected representation current state of validators for the selected representation
(Section 7.2). Hence, these preconditions evaluate whether the state (Section 10.2). Hence, these preconditions evaluate whether the
of the target resource has changed since a given state known by the state of the target resource has changed since a given state known by
client. The effect of such an evaluation depends on the method the client. The effect of such an evaluation depends on the method
semantics and choice of conditional, as defined in Section 5 of semantics and choice of conditional, as defined in Section 8.2.1.
[RFC7232].
+---------------------+--------------------------+ +---------------------+---------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+---------------------+--------------------------+ +---------------------+---------------+
| If-Match | Section 3.1 of [RFC7232] | | If-Match | Section 8.2.3 |
| If-None-Match | Section 3.2 of [RFC7232] | | If-None-Match | Section 8.2.4 |
| If-Modified-Since | Section 3.3 of [RFC7232] | | If-Modified-Since | Section 8.2.5 |
| If-Unmodified-Since | Section 3.4 of [RFC7232] | | If-Unmodified-Since | Section 8.2.6 |
| If-Range | Section 3.2 of [RFC7233] | | If-Range | Section 8.2.7 |
+---------------------+--------------------------+ +---------------------+---------------+
5. Evaluation 8.2.1. Evaluation
Except when excluded below, a recipient cache or origin server MUST Except when excluded below, a recipient cache or origin server MUST
evaluate received request preconditions after it has successfully evaluate received request preconditions after it has successfully
performed its normal request checks and just before it would perform performed its normal request checks and just before it would perform
the action associated with the request method. A server MUST ignore the action associated with the request method. A server MUST ignore
all received preconditions if its response to the same request all received preconditions if its response to the same request
without those conditions would have been a status code other than a without those conditions would have been a status code other than a
2xx (Successful) or 412 (Precondition Failed). In other words, 2xx (Successful) or 412 (Precondition Failed). In other words,
redirects and failures take precedence over the evaluation of redirects and failures take precedence over the evaluation of
preconditions in conditional requests. preconditions in conditional requests.
skipping to change at line 3820 skipping to change at page 92, line 43
cannot act as a cache for requests on the target resource MUST NOT cannot act as a cache for requests on the target resource MUST NOT
evaluate the conditional request header fields defined by this evaluate the conditional request header fields defined by this
specification, and it MUST forward them if the request is forwarded, specification, and it MUST forward them if the request is forwarded,
since the generating client intends that they be evaluated by a since the generating client intends that they be evaluated by a
server that can provide a current representation. Likewise, a server server that can provide a current representation. Likewise, a server
MUST ignore the conditional request header fields defined by this MUST ignore the conditional request header fields defined by this
specification when received with a request method that does not specification when received with a request method that does not
involve the selection or modification of a selected representation, involve the selection or modification of a selected representation,
such as CONNECT, OPTIONS, or TRACE. such as CONNECT, OPTIONS, or TRACE.
Note that protocol extensions can modify the conditions under which
revalidation is triggered. For example, the "immutable" cache
directive (defined by [RFC8246]) instructs caches to forgo
revalidation of fresh responses even when requested by the client.
Conditional request header fields that are defined by extensions to Conditional request header fields that are defined by extensions to
HTTP might place conditions on all recipients, on the state of the HTTP might place conditions on all recipients, on the state of the
target resource in general, or on a group of resources. For target resource in general, or on a group of resources. For
instance, the "If" header field in WebDAV can make a request instance, the "If" header field in WebDAV can make a request
conditional on various aspects of multiple resources, such as locks, conditional on various aspects of multiple resources, such as locks,
if the recipient understands and implements that field ([RFC4918], if the recipient understands and implements that field ([RFC4918],
Section 10.4). Section 10.4).
Although conditional request header fields are defined as being Although conditional request header fields are defined as being
usable with the HEAD method (to keep HEAD's semantics consistent with usable with the HEAD method (to keep HEAD's semantics consistent with
those of GET), there is no point in sending a conditional HEAD those of GET), there is no point in sending a conditional HEAD
because a successful response is around the same size as a 304 (Not because a successful response is around the same size as a 304 (Not
Modified) response and more useful than a 412 (Precondition Failed) Modified) response and more useful than a 412 (Precondition Failed)
response. response.
6. Precedence 8.2.2. Precedence
When more than one conditional request header field is present in a When more than one conditional request header field is present in a
request, the order in which the fields are evaluated becomes request, the order in which the fields are evaluated becomes
important. In practice, the fields defined in this document are important. In practice, the fields defined in this document are
consistently implemented in a single, logical order, since "lost consistently implemented in a single, logical order, since "lost
update" preconditions have more strict requirements than cache update" preconditions have more strict requirements than cache
validation, a validated cache is more efficient than a partial validation, a validated cache is more efficient than a partial
response, and entity tags are presumed to be more accurate than date response, and entity tags are presumed to be more accurate than date
validators. validators.
A recipient cache or origin server MUST evaluate the request A recipient cache or origin server MUST evaluate the request
preconditions defined by this specification in the following order: preconditions defined by this specification in the following order:
1. When recipient is the origin server and If-Match is present, 1. When recipient is the origin server and If-Match is present,
evaluate the If-Match precondition: evaluate the If-Match precondition:
* if true, continue to step 3 * if true, continue to step 3
* if false, respond 412 (Precondition Failed) unless it can be * if false, respond 412 (Precondition Failed) unless it can be
determined that the state-changing request has already determined that the state-changing request has already
succeeded (see Section 3.1) succeeded (see Section 8.2.3)
2. When recipient is the origin server, If-Match is not present, and 2. When recipient is the origin server, If-Match is not present, and
If-Unmodified-Since is present, evaluate the If-Unmodified-Since If-Unmodified-Since is present, evaluate the If-Unmodified-Since
precondition: precondition:
* if true, continue to step 3 * if true, continue to step 3
* if false, respond 412 (Precondition Failed) unless it can be * if false, respond 412 (Precondition Failed) unless it can be
determined that the state-changing request has already determined that the state-changing request has already
succeeded (see Section 3.4) succeeded (see Section 8.2.6)
3. When If-None-Match is present, evaluate the If-None-Match 3. When If-None-Match is present, evaluate the If-None-Match
precondition: precondition:
* if true, continue to step 5 * if true, continue to step 5
* if false for GET/HEAD, respond 304 (Not Modified) * if false for GET/HEAD, respond 304 (Not Modified)
* if false for other methods, respond 412 (Precondition Failed) * if false for other methods, respond 412 (Precondition Failed)
skipping to change at line 3890 skipping to change at page 94, line 30
* if true, continue to step 5 * if true, continue to step 5
* if false, respond 304 (Not Modified) * if false, respond 304 (Not Modified)
5. When the method is GET and both Range and If-Range are present, 5. When the method is GET and both Range and If-Range are present,
evaluate the If-Range precondition: evaluate the If-Range precondition:
* if the validator matches and the Range specification is * if the validator matches and the Range specification is
applicable to the selected representation, respond 206 applicable to the selected representation, respond 206
(Partial Content) [RFC7233] (Partial Content)
6. Otherwise, 6. Otherwise,
* all conditions are met, so perform the requested action and * all conditions are met, so perform the requested action and
respond according to its success or failure. respond according to its success or failure.
Any extension to HTTP/1.1 that defines additional conditional request Any extension to HTTP/1.1 that defines additional conditional request
header fields ought to define its own expectations regarding the header fields ought to define its own expectations regarding the
order for evaluating such fields in relation to those defined in this order for evaluating such fields in relation to those defined in this
document and other conditionals that might be found in practice. document and other conditionals that might be found in practice.
3.1. If-Match 8.2.3. If-Match
The "If-Match" header field makes the request method conditional on The "If-Match" header field makes the request method conditional on
the recipient origin server either having at least one current the recipient origin server either having at least one current
representation of the target resource, when the field-value is "*", representation of the target resource, when the field value is "*",
or having a current representation of the target resource that has an or having a current representation of the target resource that has an
entity-tag matching a member of the list of entity-tags provided in entity-tag matching a member of the list of entity-tags provided in
the field-value. the field value.
An origin server MUST use the strong comparison function when An origin server MUST use the strong comparison function when
comparing entity-tags for If-Match (Section 2.3.2), since the client comparing entity-tags for If-Match (Section 10.2.3.2), since the
intends this precondition to prevent the method from being applied if client intends this precondition to prevent the method from being
there have been any changes to the representation data. applied if there have been any changes to the representation data.
If-Match = "*" / 1#entity-tag If-Match = "*" / 1#entity-tag
Examples: Examples:
If-Match: "xyzzy" If-Match: "xyzzy"
If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz" If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
If-Match: * If-Match: *
If-Match is most often used with state-changing methods (e.g., POST, If-Match is most often used with state-changing methods (e.g., POST,
PUT, DELETE) to prevent accidental overwrites when multiple user PUT, DELETE) to prevent accidental overwrites when multiple user
agents might be acting in parallel on the same resource (i.e., to agents might be acting in parallel on the same resource (i.e., to
prevent the "lost update" problem). It can also be used with safe prevent the "lost update" problem). It can also be used with safe
methods to abort a request if the selected representation does not methods to abort a request if the selected representation does not
match one already stored (or partially stored) from a prior request. match one already stored (or partially stored) from a prior request.
An origin server that receives an If-Match header field MUST evaluate An origin server that receives an If-Match header field MUST evaluate
the condition prior to performing the method (Section 5). If the the condition prior to performing the method (Section 8.2.1). If the
field-value is "*", the condition is false if the origin server does field value is "*", the condition is false if the origin server does
not have a current representation for the target resource. If the not have a current representation for the target resource. If the
field-value is a list of entity-tags, the condition is false if none field value is a list of entity-tags, the condition is false if none
of the listed tags match the entity-tag of the selected of the listed tags match the entity-tag of the selected
representation. representation.
An origin server MUST NOT perform the requested method if a received An origin server MUST NOT perform the requested method if a received
If-Match condition evaluates to false; instead, the origin server If-Match condition evaluates to false; instead, the origin server
MUST respond with either a) the 412 (Precondition Failed) status code MUST respond with either a) the 412 (Precondition Failed) status code
or b) one of the 2xx (Successful) status codes if the origin server or b) one of the 2xx (Successful) status codes if the origin server
has verified that a state change is being requested and the final has verified that a state change is being requested and the final
state is already reflected in the current state of the target state is already reflected in the current state of the target
resource (i.e., the change requested by the user agent has already resource (i.e., the change requested by the user agent has already
succeeded, but the user agent might not be aware of it, perhaps succeeded, but the user agent might not be aware of it, perhaps
because the prior response was lost or a compatible change was made because the prior response was lost or a compatible change was made
by some other user agent). In the latter case, the origin server by some other user agent). In the latter case, the origin server
MUST NOT send a validator header field in the response unless it can MUST NOT send a validator header field in the response unless it can
verify that the request is a duplicate of an immediately prior change verify that the request is a duplicate of an immediately prior change
made by the same user agent. made by the same user agent.
The If-Match header field can be ignored by caches and intermediaries The If-Match header field can be ignored by caches and intermediaries
because it is not applicable to a stored response. because it is not applicable to a stored response.
3.2. If-None-Match 8.2.4. If-None-Match
The "If-None-Match" header field makes the request method conditional The "If-None-Match" header field makes the request method conditional
on a recipient cache or origin server either not having any current on a recipient cache or origin server either not having any current
representation of the target resource, when the field-value is "*", representation of the target resource, when the field value is "*",
or having a selected representation with an entity-tag that does not or having a selected representation with an entity-tag that does not
match any of those listed in the field-value. match any of those listed in the field value.
A recipient MUST use the weak comparison function when comparing A recipient MUST use the weak comparison function when comparing
entity-tags for If-None-Match (Section 2.3.2), since weak entity-tags entity-tags for If-None-Match (Section 10.2.3.2), since weak entity-
can be used for cache validation even if there have been changes to tags can be used for cache validation even if there have been changes
the representation data. to the representation data.
If-None-Match = "*" / 1#entity-tag If-None-Match = "*" / 1#entity-tag
Examples: Examples:
If-None-Match: "xyzzy" If-None-Match: "xyzzy"
If-None-Match: W/"xyzzy" If-None-Match: W/"xyzzy"
If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz" If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz" If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz"
If-None-Match: * If-None-Match: *
skipping to change at line 3992 skipping to change at page 96, line 51
stored responses that have entity-tags, the client SHOULD generate an stored responses that have entity-tags, the client SHOULD generate an
If-None-Match header field containing a list of those entity-tags If-None-Match header field containing a list of those entity-tags
when making a GET request; this allows recipient servers to send a when making a GET request; this allows recipient servers to send a
304 (Not Modified) response to indicate when one of those stored 304 (Not Modified) response to indicate when one of those stored
responses matches the selected representation. responses matches the selected representation.
If-None-Match can also be used with a value of "*" to prevent an If-None-Match can also be used with a value of "*" to prevent an
unsafe request method (e.g., PUT) from inadvertently modifying an unsafe request method (e.g., PUT) from inadvertently modifying an
existing representation of the target resource when the client existing representation of the target resource when the client
believes that the resource does not have a current representation believes that the resource does not have a current representation
(Section 4.2.1 of [RFC7231]). This is a variation on the "lost (Section 7.2.1). This is a variation on the "lost update" problem
update" problem that might arise if more than one client attempts to that might arise if more than one client attempts to create an
create an initial representation for the target resource. initial representation for the target resource.
An origin server that receives an If-None-Match header field MUST An origin server that receives an If-None-Match header field MUST
evaluate the condition prior to performing the method (Section 5). evaluate the condition prior to performing the method
If the field-value is "*", the condition is false if the origin (Section 8.2.1). If the field value is "*", the condition is false
server has a current representation for the target resource. If the if the origin server has a current representation for the target
field-value is a list of entity-tags, the condition is false if one resource. If the field value is a list of entity-tags, the condition
of the listed tags match the entity-tag of the selected is false if one of the listed tags match the entity-tag of the
representation. selected representation.
An origin server MUST NOT perform the requested method if the An origin server MUST NOT perform the requested method if the
condition evaluates to false; instead, the origin server MUST respond condition evaluates to false; instead, the origin server MUST respond
with either a) the 304 (Not Modified) status code if the request with either a) the 304 (Not Modified) status code if the request
method is GET or HEAD or b) the 412 (Precondition Failed) status code method is GET or HEAD or b) the 412 (Precondition Failed) status code
for all other request methods. for all other request methods.
Requirements on cache handling of a received If-None-Match header Requirements on cache handling of a received If-None-Match header
field are defined in Section 4.3.2 of [RFC7234]. field are defined in Section 4.3.2 of [Caching].
3.3. If-Modified-Since 8.2.5. If-Modified-Since
The "If-Modified-Since" header field makes a GET or HEAD request The "If-Modified-Since" header field makes a GET or HEAD request
method conditional on the selected representation's modification date method conditional on the selected representation's modification date
being more recent than the date provided in the field-value. being more recent than the date provided in the field value.
Transfer of the selected representation's data is avoided if that Transfer of the selected representation's data is avoided if that
data has not changed. data has not changed.
If-Modified-Since = HTTP-date If-Modified-Since = HTTP-date
An example of the field is: An example of the field is:
If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
A recipient MUST ignore If-Modified-Since if the request contains an A recipient MUST ignore If-Modified-Since if the request contains an
If-None-Match header field; the condition in If-None-Match is If-None-Match header field; the condition in If-None-Match is
considered to be a more accurate replacement for the condition in considered to be a more accurate replacement for the condition in If-
If-Modified-Since, and the two are only combined for the sake of Modified-Since, and the two are only combined for the sake of
interoperating with older intermediaries that might not implement interoperating with older intermediaries that might not implement If-
If-None-Match. None-Match.
A recipient MUST ignore the If-Modified-Since header field if the A recipient MUST ignore the If-Modified-Since header field if the
received field-value is not a valid HTTP-date, or if the request received field value is not a valid HTTP-date, or if the request
method is neither GET nor HEAD. method is neither GET nor HEAD.
A recipient MUST interpret an If-Modified-Since field-value's A recipient MUST interpret an If-Modified-Since field value's
timestamp in terms of the origin server's clock. timestamp in terms of the origin server's clock.
If-Modified-Since is typically used for two distinct purposes: 1) to If-Modified-Since is typically used for two distinct purposes: 1) to
allow efficient updates of a cached representation that does not have allow efficient updates of a cached representation that does not have
an entity-tag and 2) to limit the scope of a web traversal to an entity-tag and 2) to limit the scope of a web traversal to
resources that have recently changed. resources that have recently changed.
When used for cache updates, a cache will typically use the value of When used for cache updates, a cache will typically use the value of
the cached message's Last-Modified field to generate the field value the cached message's Last-Modified field to generate the field value
of If-Modified-Since. This behavior is most interoperable for cases of If-Modified-Since. This behavior is most interoperable for cases
where clocks are poorly synchronized or when the server has chosen to where clocks are poorly synchronized or when the server has chosen to
only honor exact timestamp matches (due to a problem with only honor exact timestamp matches (due to a problem with Last-
Last-Modified dates that appear to go "back in time" when the origin Modified dates that appear to go "back in time" when the origin
server's clock is corrected or a representation is restored from an server's clock is corrected or a representation is restored from an
archived backup). However, caches occasionally generate the field archived backup). However, caches occasionally generate the field
value based on other data, such as the Date header field of the value based on other data, such as the Date header field of the
cached message or the local clock time that the message was received, cached message or the local clock time that the message was received,
particularly when the cached message does not contain a Last-Modified particularly when the cached message does not contain a Last-Modified
field. field.
When used for limiting the scope of retrieval to a recent time When used for limiting the scope of retrieval to a recent time
window, a user agent will generate an If-Modified-Since field value window, a user agent will generate an If-Modified-Since field value
based on either its own local clock or a Date header field received based on either its own local clock or a Date header field received
from the server in a prior response. Origin servers that choose an from the server in a prior response. Origin servers that choose an
exact timestamp match based on the selected representation's exact timestamp match based on the selected representation's Last-
Last-Modified field will not be able to help the user agent limit its Modified field will not be able to help the user agent limit its data
data transfers to only those changed during the specified window. transfers to only those changed during the specified window.
An origin server that receives an If-Modified-Since header field An origin server that receives an If-Modified-Since header field
SHOULD evaluate the condition prior to performing the method SHOULD evaluate the condition prior to performing the method
(Section 5). The origin server SHOULD NOT perform the requested (Section 8.2.1). The origin server SHOULD NOT perform the requested
method if the selected representation's last modification date is method if the selected representation's last modification date is
earlier than or equal to the date provided in the field-value; earlier than or equal to the date provided in the field value;
instead, the origin server SHOULD generate a 304 (Not Modified) instead, the origin server SHOULD generate a 304 (Not Modified)
response, including only those metadata that are useful for response, including only those metadata that are useful for
identifying or updating a previously cached response. identifying or updating a previously cached response.
Requirements on cache handling of a received If-Modified-Since header Requirements on cache handling of a received If-Modified-Since header
field are defined in Section 4.3.2 of [RFC7234]. field are defined in Section 4.3.2 of [Caching].
3.4. If-Unmodified-Since 8.2.6. If-Unmodified-Since
The "If-Unmodified-Since" header field makes the request method The "If-Unmodified-Since" header field makes the request method
conditional on the selected representation's last modification date conditional on the selected representation's last modification date
being earlier than or equal to the date provided in the field-value. being earlier than or equal to the date provided in the field value.
This field accomplishes the same purpose as If-Match for cases where This field accomplishes the same purpose as If-Match for cases where
the user agent does not have an entity-tag for the representation. the user agent does not have an entity-tag for the representation.
If-Unmodified-Since = HTTP-date If-Unmodified-Since = HTTP-date
An example of the field is: An example of the field is:
If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT
A recipient MUST ignore If-Unmodified-Since if the request contains A recipient MUST ignore If-Unmodified-Since if the request contains
an If-Match header field; the condition in If-Match is considered to an If-Match header field; the condition in If-Match is considered to
be a more accurate replacement for the condition in be a more accurate replacement for the condition in If-Unmodified-
If-Unmodified-Since, and the two are only combined for the sake of Since, and the two are only combined for the sake of interoperating
interoperating with older intermediaries that might not implement with older intermediaries that might not implement If-Match.
If-Match.
A recipient MUST ignore the If-Unmodified-Since header field if the A recipient MUST ignore the If-Unmodified-Since header field if the
received field-value is not a valid HTTP-date. received field value is not a valid HTTP-date.
A recipient MUST interpret an If-Unmodified-Since field-value's A recipient MUST interpret an If-Unmodified-Since field value's
timestamp in terms of the origin server's clock. timestamp in terms of the origin server's clock.
If-Unmodified-Since is most often used with state-changing methods If-Unmodified-Since is most often used with state-changing methods
(e.g., POST, PUT, DELETE) to prevent accidental overwrites when (e.g., POST, PUT, DELETE) to prevent accidental overwrites when
multiple user agents might be acting in parallel on a resource that multiple user agents might be acting in parallel on a resource that
does not supply entity-tags with its representations (i.e., to does not supply entity-tags with its representations (i.e., to
prevent the "lost update" problem). It can also be used with safe prevent the "lost update" problem). It can also be used with safe
methods to abort a request if the selected representation does not methods to abort a request if the selected representation does not
match one already stored (or partially stored) from a prior request. match one already stored (or partially stored) from a prior request.
An origin server that receives an If-Unmodified-Since header field An origin server that receives an If-Unmodified-Since header field
MUST evaluate the condition prior to performing the method MUST evaluate the condition prior to performing the method
(Section 5). The origin server MUST NOT perform the requested method (Section 8.2.1). The origin server MUST NOT perform the requested
if the selected representation's last modification date is more method if the selected representation's last modification date is
recent than the date provided in the field-value; instead the origin more recent than the date provided in the field value; instead the
server MUST respond with either a) the 412 (Precondition Failed) origin server MUST respond with either a) the 412 (Precondition
status code or b) one of the 2xx (Successful) status codes if the Failed) status code or b) one of the 2xx (Successful) status codes if
origin server has verified that a state change is being requested and the origin server has verified that a state change is being requested
the final state is already reflected in the current state of the and the final state is already reflected in the current state of the
target resource (i.e., the change requested by the user agent has target resource (i.e., the change requested by the user agent has
already succeeded, but the user agent might not be aware of that already succeeded, but the user agent might not be aware of that
because the prior response message was lost or a compatible change because the prior response message was lost or a compatible change
was made by some other user agent). In the latter case, the origin was made by some other user agent). In the latter case, the origin
server MUST NOT send a validator header field in the response unless server MUST NOT send a validator header field in the response unless
it can verify that the request is a duplicate of an immediately prior it can verify that the request is a duplicate of an immediately prior
change made by the same user agent. change made by the same user agent.
The If-Unmodified-Since header field can be ignored by caches and The If-Unmodified-Since header field can be ignored by caches and
intermediaries because it is not applicable to a stored response. intermediaries because it is not applicable to a stored response.
3.5. If-Range 8.2.7. If-Range
The "If-Range" header field provides a special conditional request The "If-Range" header field provides a special conditional request
mechanism that is similar to the If-Match and If-Unmodified-Since mechanism that is similar to the If-Match and If-Unmodified-Since
header fields but that instructs the recipient to ignore the Range header fields but that instructs the recipient to ignore the Range
header field if the validator doesn't match, resulting in transfer of header field if the validator doesn't match, resulting in transfer of
the new selected representation instead of a 412 (Precondition the new selected representation instead of a 412 (Precondition
Failed) response. If-Range is defined in Section 3.2 of [RFC7233]. Failed) response.
If a client has a partial copy of a representation and wishes to have If a client has a partial copy of a representation and wishes to have
an up-to-date copy of the entire representation, it could use the an up-to-date copy of the entire representation, it could use the
Range header field with a conditional GET (using either or both of Range header field with a conditional GET (using either or both of
If-Unmodified-Since and If-Match.) However, if the precondition If-Unmodified-Since and If-Match.) However, if the precondition
fails because the representation has been modified, the client would fails because the representation has been modified, the client would
then have to make a second request to obtain the entire current then have to make a second request to obtain the entire current
representation. representation.
The "If-Range" header field allows a client to "short-circuit" the The "If-Range" header field allows a client to "short-circuit" the
second request. Informally, its meaning is as follows: if the second request. Informally, its meaning is as follows: if the
representation is unchanged, send me the part(s) that I am requesting representation is unchanged, send me the part(s) that I am requesting
in Range; otherwise, send me the entire representation. in Range; otherwise, send me the entire representation.
If-Range = entity-tag / HTTP-date If-Range = entity-tag / HTTP-date
A client MUST NOT generate an If-Range header field in a request that A client MUST NOT generate an If-Range header field in a request that
does not contain a Range header field. A server MUST ignore an does not contain a Range header field. A server MUST ignore an If-
If-Range header field received in a request that does not contain a Range header field received in a request that does not contain a
Range header field. An origin server MUST ignore an If-Range header Range header field. An origin server MUST ignore an If-Range header
field received in a request for a target resource that does not field received in a request for a target resource that does not
support Range requests. support Range requests.
A client MUST NOT generate an If-Range header field containing an A client MUST NOT generate an If-Range header field containing an
entity-tag that is marked as weak. A client MUST NOT generate an entity-tag that is marked as weak. A client MUST NOT generate an If-
If-Range header field containing an HTTP-date unless the client has Range header field containing an HTTP-date unless the client has no
no entity-tag for the corresponding representation and the date is a entity-tag for the corresponding representation and the date is a
strong validator in the sense defined by Section 2.2.2 of [RFC7232]. strong validator in the sense defined by Section 10.2.2.2.
A server that evaluates an If-Range precondition MUST use the strong A server that evaluates an If-Range precondition MUST use the strong
comparison function when comparing entity-tags (Section 2.3.2 of comparison function when comparing entity-tags (Section 10.2.3.2) and
[RFC7232]) and MUST evaluate the condition as false if an HTTP-date MUST evaluate the condition as false if an HTTP-date validator is
validator is provided that is not a strong validator in the sense provided that is not a strong validator in the sense defined by
defined by Section 2.2.2 of [RFC7232]. A valid entity-tag can be Section 10.2.2.2. A valid entity-tag can be distinguished from a
distinguished from a valid HTTP-date by examining the first two valid HTTP-date by examining the first two characters for a DQUOTE.
characters for a DQUOTE.
If the validator given in the If-Range header field matches the If the validator given in the If-Range header field matches the
current validator for the selected representation of the target current validator for the selected representation of the target
resource, then the server SHOULD process the Range header field as resource, then the server SHOULD process the Range header field as
requested. If the validator does not match, the server MUST ignore requested. If the validator does not match, the server MUST ignore
the Range header field. Note that this comparison by exact match, the Range header field. Note that this comparison by exact match,
including when the validator is an HTTP-date, differs from the including when the validator is an HTTP-date, differs from the
"earlier than or equal to" comparison used when evaluating an "earlier than or equal to" comparison used when evaluating an If-
If-Unmodified-Since conditional. Unmodified-Since conditional.
3.1. Range 8.3. Range
The "Range" header field on a GET request modifies the method The "Range" header field on a GET request modifies the method
semantics to request transfer of only one or more subranges of the semantics to request transfer of only one or more subranges of the
selected representation data, rather than the entire selected selected representation data, rather than the entire selected
representation data. representation data.
Range = byte-ranges-specifier / other-ranges-specifier Range = ranges-specifier
other-ranges-specifier = other-range-unit "=" other-range-set
other-range-set = 1*VCHAR
Hypertext Transfer Protocol (HTTP) clients often encounter Clients often encounter interrupted data transfers as a result of
interrupted data transfers as a result of canceled requests or canceled requests or dropped connections. When a client has stored a
dropped connections. When a client has stored a partial partial representation, it is desirable to request the remainder of
representation, it is desirable to request the remainder of that that representation in a subsequent request rather than transfer the
representation in a subsequent request rather than transfer the
entire representation. Likewise, devices with limited local storage entire representation. Likewise, devices with limited local storage
might benefit from being able to request only a subset of a larger might benefit from being able to request only a subset of a larger
representation, such as a single page of a very large document, or representation, such as a single page of a very large document, or
the dimensions of an embedded image. the dimensions of an embedded image.
Range requests are an OPTIONAL Range requests are an OPTIONAL feature of HTTP, designed so that
feature of HTTP, designed so that recipients not implementing this recipients not implementing this feature (or not supporting it for
feature (or not supporting it for the target resource) can respond as the target resource) can respond as if it is a normal GET request
if it is a normal GET request without impacting interoperability. without impacting interoperability. Partial responses are indicated
Partial responses are indicated by a distinct status code to not be by a distinct status code to not be mistaken for full responses by
mistaken for full responses by caches that might not implement the caches that might not implement the feature.
feature.
A server MAY ignore the Range header field. However, origin servers A server MAY ignore the Range header field. However, origin servers
and intermediate caches ought to support byte ranges when possible, and intermediate caches ought to support byte ranges when possible,
since Range supports efficient recovery from partially failed since they support efficient recovery from partially failed transfers
transfers and partial retrieval of large representations. A server and partial retrieval of large representations. A server MUST ignore
MUST ignore a Range header field received with a request method other a Range header field received with a request method other than GET.
than GET.
Although the range request mechanism is designed to allow for Although the range request mechanism is designed to allow for
extensible range types, this specification only defines requests for extensible range types, this specification only defines requests for
byte ranges. byte ranges.
An origin server MUST ignore a Range header field that contains a An origin server MUST ignore a Range header field that contains a
range unit it does not understand. A proxy MAY discard a Range range unit it does not understand. A proxy MAY discard a Range
header field that contains a range unit it does not understand. header field that contains a range unit it does not understand.
A server that supports range requests MAY ignore or reject a Range A server that supports range requests MAY ignore or reject a Range
header field that consists of more than two overlapping ranges, or a header field that consists of more than two overlapping ranges, or a
set of many small ranges that are not listed in ascending order, set of many small ranges that are not listed in ascending order,
since both are indications of either a broken client or a deliberate since both are indications of either a broken client or a deliberate
denial-of-service attack (Section 6.1). A client SHOULD NOT request denial-of-service attack (Section 11.13). A client SHOULD NOT
multiple ranges that are inherently less efficient to process and request multiple ranges that are inherently less efficient to process
transfer than a single range that encompasses the same data. and transfer than a single range that encompasses the same data.
A client that is requesting multiple ranges SHOULD list those ranges A client that is requesting multiple ranges SHOULD list those ranges
in ascending order (the order in which they would typically be in ascending order (the order in which they would typically be
received in a complete representation) unless there is a specific received in a complete representation) unless there is a specific
need to request a later part earlier. For example, a user agent need to request a later part earlier. For example, a user agent
processing a large representation with an internal catalog of parts processing a large representation with an internal catalog of parts
might need to request later parts first, particularly if the might need to request later parts first, particularly if the
representation consists of pages stored in reverse order and the user representation consists of pages stored in reverse order and the user
agent wishes to transfer one page at a time. agent wishes to transfer one page at a time.
The Range header field is evaluated after evaluating the precondition The Range header field is evaluated after evaluating the precondition
header fields defined in [RFC7232], and only if the result in absence header fields defined in Section 8.2, and only if the result in
of the Range header field would be a 200 (OK) response. In other absence of the Range header field would be a 200 (OK) response. In
words, Range is ignored when a conditional GET would result in a 304 other words, Range is ignored when a conditional GET would result in
(Not Modified) response. a 304 (Not Modified) response.
The If-Range header field (Section 3.2) can be used as a precondition The If-Range header field (Section 8.2.7) can be used as a
to applying the Range header field. precondition to applying the Range header field.
If all of the preconditions are true, the server supports the Range If all of the preconditions are true, the server supports the Range
header field for the target resource, and the specified range(s) are header field for the target resource, and the specified range(s) are
valid and satisfiable (as defined in Section 2.1), the server SHOULD valid and satisfiable (as defined in Section 6.1.4.2), the server
send a 206 (Partial Content) response with a payload containing one SHOULD send a 206 (Partial Content) response with a payload
or more partial representations that correspond to the satisfiable containing one or more partial representations that correspond to the
ranges requested, as defined in Section 4. satisfiable ranges requested.
If all of the preconditions are true, the server supports the Range If all of the preconditions are true, the server supports the Range
header field for the target resource, and the specified range(s) are header field for the target resource, and the specified range(s) are
invalid or unsatisfiable, the server SHOULD send a 416 (Range Not invalid or unsatisfiable, the server SHOULD send a 416 (Range Not
Satisfiable) response. Satisfiable) response.
5.3. Content Negotiation 8.4. Content Negotiation
The following request header fields are sent by a user agent to The following request header fields are sent by a user agent to
engage in proactive negotiation of the response content, as defined engage in proactive negotiation of the response content, as defined
in Section 3.4.1. The preferences sent in these fields apply to any in Section 6.4.1. The preferences sent in these fields apply to any
content in the response, including representations of the target content in the response, including representations of the target
resource, representations of error or processing status, and resource, representations of error or processing status, and
potentially even the miscellaneous text strings that might appear potentially even the miscellaneous text strings that might appear
within the protocol. within the protocol.
+-------------------+---------------+ +-----------------+---------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+-------------------+---------------+ +-----------------+---------------+
| Accept | Section 5.3.2 | | Accept | Section 8.4.2 |
| Accept-Charset | Section 5.3.3 | | Accept-Charset | Section 8.4.3 |
| Accept-Encoding | Section 5.3.4 | | Accept-Encoding | Section 8.4.4 |
| Accept-Language | Section 5.3.5 | | Accept-Language | Section 8.4.5 |
+-------------------+---------------+ +-----------------+---------------+
For each of these header fields, a request that does not contain it
implies that the user agent has no preference on that axis of
negotiation. If the header field is present in a request and none of
the available representations for the response can be considered
acceptable according to it, the origin server can either honor the
header field by sending a 406 (Not Acceptable) response or disregard
the header field by treating the response as if it is not subject to
content negotiation for that request header field. This does not
imply, however, that the client will be able to use the
representation.
Note: Sending these header fields makes it easier for a server to
identify an individual by virtue of the user agent's request
characteristics (Section 11.11).
Each of these header fields defines a wildcard value (often, "*") to
select unspecified values. If no wildcard is present, all values not
explicitly mentioned in the field are considered "not acceptable" to
the client.
Note: In practice, using wildcards in content negotiation has limited
practical value, because it is seldom useful to say, for example, "I
prefer image/* more or less than (some other specific value)".
Clients can explicitly request a 406 (Not Acceptable) response if a
more preferred format is not available by sending Accept: */*;q=0,
but they still need to be able to handle a different response, since
the server is allowed to ignore their preference.
8.4.1. Quality Values 8.4.1. Quality Values
Many of the request header fields for proactive negotiation use a Many of the request header fields for proactive negotiation use a
common parameter, named "q" (case-insensitive), to assign a relative common parameter, named "q" (case-insensitive), to assign a relative
"weight" to the preference for that associated kind of content. This "weight" to the preference for that associated kind of content. This
weight is referred to as a "quality value" (or "qvalue") because the weight is referred to as a "quality value" (or "qvalue") because the
same parameter name is often used within server configurations to same parameter name is often used within server configurations to
assign a weight to the relative quality of the various assign a weight to the relative quality of the various
representations that can be selected for a resource. representations that can be selected for a resource.
skipping to change at line 4312 skipping to change at page 104, line 18
the default weight is 1. the default weight is 1.
weight = OWS ";" OWS "q=" qvalue weight = OWS ";" OWS "q=" qvalue
qvalue = ( "0" [ "." 0*3DIGIT ] ) qvalue = ( "0" [ "." 0*3DIGIT ] )
/ ( "1" [ "." 0*3("0") ] ) / ( "1" [ "." 0*3("0") ] )
A sender of qvalue MUST NOT generate more than three digits after the A sender of qvalue MUST NOT generate more than three digits after the
decimal point. User configuration of these values ought to be decimal point. User configuration of these values ought to be
limited in the same fashion. limited in the same fashion.
5.3.2. Accept 8.4.2. Accept
The "Accept" header field can be used by user agents to specify The "Accept" header field can be used by user agents to specify their
response media types that are acceptable. Accept header fields can preferences regarding response media types. For example, Accept
be used to indicate that the request is specifically limited to a header fields can be used to indicate that the request is
small set of desired types, as in the case of a request for an specifically limited to a small set of desired types, as in the case
in-line image. of a request for an in-line image.
Accept = #( media-range [ accept-params ] ) Accept = #( media-range [ accept-params ] )
media-range = ( "*/*" media-range = ( "*/*"
/ ( type "/" "*" ) / ( type "/" "*" )
/ ( type "/" subtype ) / ( type "/" subtype )
) *( OWS ";" OWS parameter ) ) *( OWS ";" OWS parameter )
accept-params = weight *( accept-ext ) accept-params = weight *( accept-ext )
accept-ext = OWS ";" OWS token [ "=" ( token / quoted-string ) ] accept-ext = OWS ";" OWS token [ "=" ( token / quoted-string ) ]
The asterisk "*" character is used to group media types into ranges, The asterisk "*" character is used to group media types into ranges,
with "*/*" indicating all media types and "type/*" indicating all with "*/*" indicating all media types and "type/*" indicating all
subtypes of that type. The media-range can include media type subtypes of that type. The media-range can include media type
parameters that are applicable to that range. parameters that are applicable to that range.
Each media-range might be followed by zero or more applicable media Each media-range might be followed by zero or more applicable media
type parameters (e.g., charset), an optional "q" parameter for type parameters (e.g., charset), an optional "q" parameter for
indicating a relative weight (Section 5.3.1), and then zero or more indicating a relative weight (Section 8.4.1), and then zero or more
extension parameters. The "q" parameter is necessary if any extension parameters. The "q" parameter is necessary if any
extensions (accept-ext) are present, since it acts as a separator extensions (accept-ext) are present, since it acts as a separator
between the two parameter sets. between the two parameter sets.
Note: Use of the "q" parameter name to separate media type Note: Use of the "q" parameter name to separate media type
parameters from Accept extension parameters is due to historical parameters from Accept extension parameters is due to historical
practice. Although this prevents any media type parameter named practice. Although this prevents any media type parameter named
"q" from being used with a media range, such an event is believed "q" from being used with a media range, such an event is believed
to be unlikely given the lack of any "q" parameters in the IANA to be unlikely given the lack of any "q" parameters in the IANA
media type registry and the rare usage of any media type media type registry and the rare usage of any media type
parameters in Accept. Future media types are discouraged from parameters in Accept. Future media types are discouraged from
registering any parameter named "q". registering any parameter named "q".
The example The example
Accept: audio/*; q=0.2, audio/basic Accept: audio/*; q=0.2, audio/basic
is interpreted as "I prefer audio/basic, but send me any audio type is interpreted as "I prefer audio/basic, but send me any audio type
if it is the best available after an 80% markdown in quality". if it is the best available after an 80% markdown in quality".
A request without any Accept header field implies that the user agent
will accept any media type in response. If the header field is
present in a request and none of the available representations for
the response have a media type that is listed as acceptable, the
origin server can either honor the header field by sending a 406 (Not
Acceptable) response or disregard the header field by treating the
response as if it is not subject to content negotiation.
A more elaborate example is A more elaborate example is
Accept: text/plain; q=0.5, text/html, Accept: text/plain; q=0.5, text/html,
text/x-dvi; q=0.8, text/x-c text/x-dvi; q=0.8, text/x-c
Verbally, this would be interpreted as "text/html and text/x-c are Verbally, this would be interpreted as "text/html and text/x-c are
the equally preferred media types, but if they do not exist, then the equally preferred media types, but if they do not exist, then
send the text/x-dvi representation, and if that does not exist, send send the text/x-dvi representation, and if that does not exist, send
the text/plain representation". the text/plain representation".
skipping to change at line 4416 skipping to change at page 106, line 21
| image/jpeg | 0.5 | | image/jpeg | 0.5 |
| text/html;level=2 | 0.4 | | text/html;level=2 | 0.4 |
| text/html;level=3 | 0.7 | | text/html;level=3 | 0.7 |
+-------------------+---------------+ +-------------------+---------------+
Note: A user agent might be provided with a default set of quality Note: A user agent might be provided with a default set of quality
values for certain media ranges. However, unless the user agent is a values for certain media ranges. However, unless the user agent is a
closed system that cannot interact with other rendering agents, this closed system that cannot interact with other rendering agents, this
default set ought to be configurable by the user. default set ought to be configurable by the user.
5.3.3. Accept-Charset 8.4.3. Accept-Charset
The "Accept-Charset" header field can be sent by a user agent to The "Accept-Charset" header field can be sent by a user agent to
indicate what charsets are acceptable in textual response content. indicate its preferences for charsets in textual response content.
This field allows user agents capable of understanding more For example, this field allows user agents capable of understanding
comprehensive or special-purpose charsets to signal that capability more comprehensive or special-purpose charsets to signal that
to an origin server that is capable of representing information in capability to an origin server that is capable of representing
those charsets. information in those charsets.
Accept-Charset = 1#( ( charset / "*" ) [ weight ] ) Accept-Charset = 1#( ( charset / "*" ) [ weight ] )
Charset names are defined in Section 3.1.1.2. A user agent MAY Charset names are defined in Section 6.1.1.1. A user agent MAY
associate a quality value with each charset to indicate the user's associate a quality value with each charset to indicate the user's
relative preference for that charset, as defined in Section 5.3.1. relative preference for that charset, as defined in Section 8.4.1.
An example is An example is
Accept-Charset: iso-8859-5, unicode-1-1;q=0.8 Accept-Charset: iso-8859-5, unicode-1-1;q=0.8
The special value "*", if present in the Accept-Charset field, The special value "*", if present in the Accept-Charset field,
matches every charset that is not mentioned elsewhere in the matches every charset that is not mentioned elsewhere in the Accept-
Accept-Charset field. If no "*" is present in an Accept-Charset Charset field.
field, then any charsets not explicitly mentioned in the field are
considered "not acceptable" to the client.
A request without any Accept-Charset header field implies that the
user agent will accept any charset in response. Most general-purpose
user agents do not send Accept-Charset, unless specifically
configured to do so, because a detailed list of supported charsets
makes it easier for a server to identify an individual by virtue of
the user agent's request characteristics (Section 9.7).
If an Accept-Charset header field is present in a request and none of Note: Accept-Charset is deprecated because UTF-8 has become nearly
the available representations for the response has a charset that is ubiquitous and sending a detailed list of user-preferred charsets
listed as acceptable, the origin server can either honor the header wastes bandwidth, increases latency, and makes passive fingerprinting
field, by sending a 406 (Not Acceptable) response, or disregard the far too easy (Section 11.11). Most general-purpose user agents do
header field by treating the resource as if it is not subject to not send Accept-Charset, unless specifically configured to do so.
content negotiation.
5.3.4. Accept-Encoding 8.4.4. Accept-Encoding
The "Accept-Encoding" header field can be used by user agents to The "Accept-Encoding" header field can be used by user agents to
indicate what response content-codings (Section 3.1.2.1) are indicate their preferences regarding response content-codings
acceptable in the response. An "identity" token is used as a synonym (Section 6.1.2). An "identity" token is used as a synonym for "no
for "no encoding" in order to communicate when no encoding is encoding" in order to communicate when no encoding is preferred.
preferred.
Accept-Encoding = #( codings [ weight ] ) Accept-Encoding = #( codings [ weight ] )
codings = content-coding / "identity" / "*" codings = content-coding / "identity" / "*"
Each codings value MAY be given an associated quality value Each codings value MAY be given an associated quality value
representing the preference for that encoding, as defined in representing the preference for that encoding, as defined in
Section 5.3.1. The asterisk "*" symbol in an Accept-Encoding field Section 8.4.1. The asterisk "*" symbol in an Accept-Encoding field
matches any available content-coding not explicitly listed in the matches any available content-coding not explicitly listed in the
header field. header field.
For example, For example,
Accept-Encoding: compress, gzip Accept-Encoding: compress, gzip
Accept-Encoding: Accept-Encoding:
Accept-Encoding: * Accept-Encoding: *
Accept-Encoding: compress;q=0.5, gzip;q=1.0 Accept-Encoding: compress;q=0.5, gzip;q=1.0
Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0 Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0
A request without an Accept-Encoding header field implies that the
user agent has no preferences regarding content-codings. Although
this allows the server to use any content-coding in a response, it
does not imply that the user agent will be able to correctly process
all encodings.
A server tests whether a content-coding for a given representation is A server tests whether a content-coding for a given representation is
acceptable using these rules: acceptable using these rules:
1. If no Accept-Encoding field is in the request, any content-coding 1. If no Accept-Encoding field is in the request, any content-coding
is considered acceptable by the user agent. is considered acceptable by the user agent.
2. If the representation has no content-coding, then it is 2. If the representation has no content-coding, then it is
acceptable by default unless specifically excluded by the acceptable by default unless specifically excluded by the Accept-
Accept-Encoding field stating either "identity;q=0" or "*;q=0" Encoding field stating either "identity;q=0" or "*;q=0" without a
without a more specific entry for "identity". more specific entry for "identity".
3. If the representation's content-coding is one of the 3. If the representation's content-coding is one of the content-
content-codings listed in the Accept-Encoding field, then it is codings listed in the Accept-Encoding field value, then it is
acceptable unless it is accompanied by a qvalue of 0. (As acceptable unless it is accompanied by a qvalue of 0. (As
defined in Section 5.3.1, a qvalue of 0 means "not acceptable".) defined in Section 8.4.1, a qvalue of 0 means "not acceptable".)
4. If multiple content-codings are acceptable, then the acceptable 4. If multiple content-codings are acceptable, then the acceptable
content-coding with the highest non-zero qvalue is preferred. content-coding with the highest non-zero qvalue is preferred.
An Accept-Encoding header field with a combined field-value that is An Accept-Encoding header field with a field value that is empty
empty implies that the user agent does not want any content-coding in implies that the user agent does not want any content-coding in
response. If an Accept-Encoding header field is present in a request response. If an Accept-Encoding header field is present in a request
and none of the available representations for the response have a and none of the available representations for the response have a
content-coding that is listed as acceptable, the origin server SHOULD content-coding that is listed as acceptable, the origin server SHOULD
send a response without any content-coding. send a response without any content-coding.
Note: Most HTTP/1.0 applications do not recognize or obey qvalues Note: Most HTTP/1.0 applications do not recognize or obey qvalues
associated with content-codings. This means that qvalues might associated with content-codings. This means that qvalues might
not work and are not permitted with x-gzip or x-compress. not work and are not permitted with x-gzip or x-compress.
5.3.5. Accept-Language 8.4.5. Accept-Language
The "Accept-Language" header field can be used by user agents to The "Accept-Language" header field can be used by user agents to
indicate the set of natural languages that are preferred in the indicate the set of natural languages that are preferred in the
response. Language tags are defined in Section 3.1.3.1. response. Language tags are defined in Section 6.1.3.
Accept-Language = 1#( language-range [ weight ] ) Accept-Language = 1#( language-range [ weight ] )
language-range = language-range =
<language-range, see [RFC4647], Section 2.1> <language-range, see [RFC4647], Section 2.1>
Each language-range can be given an associated quality value Each language-range can be given an associated quality value
representing an estimate of the user's preference for the languages representing an estimate of the user's preference for the languages
specified by that range, as defined in Section 5.3.1. For example, specified by that range, as defined in Section 8.4.1. For example,
Accept-Language: da, en-gb;q=0.8, en;q=0.7 Accept-Language: da, en-gb;q=0.8, en;q=0.7
would mean: "I prefer Danish, but will accept British English and would mean: "I prefer Danish, but will accept British English and
other types of English". other types of English".
A request without any Accept-Language header field implies that the
user agent will accept any language in response. If the header field
is present in a request and none of the available representations for
the response have a matching language tag, the origin server can
either disregard the header field by treating the response as if it
is not subject to content negotiation or honor the header field by
sending a 406 (Not Acceptable) response. However, the latter is not
encouraged, as doing so can prevent users from accessing content that
they might be able to use (with translation software, for example).
Note that some recipients treat the order in which language tags are Note that some recipients treat the order in which language tags are
listed as an indication of descending priority, particularly for tags listed as an indication of descending priority, particularly for tags
that are assigned equal quality values (no value is the same as q=1). that are assigned equal quality values (no value is the same as q=1).
However, this behavior cannot be relied upon. For consistency and to However, this behavior cannot be relied upon. For consistency and to
maximize interoperability, many user agents assign each language tag maximize interoperability, many user agents assign each language tag
a unique quality value while also listing them in order of decreasing a unique quality value while also listing them in order of decreasing
quality. Additional discussion of language priority lists can be quality. Additional discussion of language priority lists can be
found in Section 2.3 of [RFC4647]. found in Section 2.3 of [RFC4647].
For matching, Section 3 of [RFC4647] defines several matching For matching, Section 3 of [RFC4647] defines several matching
schemes. Implementations can offer the most appropriate matching schemes. Implementations can offer the most appropriate matching
scheme for their requirements. The "Basic Filtering" scheme scheme for their requirements. The "Basic Filtering" scheme
([RFC4647], Section 3.3.1) is identical to the matching scheme that ([RFC4647], Section 3.3.1) is identical to the matching scheme that
was previously defined for HTTP in Section 14.4 of [RFC2616]. was previously defined for HTTP in Section 14.4 of [RFC2616].
It might be contrary to the privacy expectations of the user to send It might be contrary to the privacy expectations of the user to send
an Accept-Language header field with the complete linguistic an Accept-Language header field with the complete linguistic
preferences of the user in every request (Section 9.7). preferences of the user in every request (Section 11.11).
Since intelligibility is highly dependent on the individual user, Since intelligibility is highly dependent on the individual user,
user agents need to allow user control over the linguistic preference user agents need to allow user control over the linguistic preference
(either through configuration of the user agent itself or by (either through configuration of the user agent itself or by
defaulting to a user controllable system setting). A user agent that defaulting to a user controllable system setting). A user agent that
does not provide such control to the user MUST NOT send an does not provide such control to the user MUST NOT send an Accept-
Accept-Language header field. Language header field.
Note: User agents ought to provide guidance to users when setting Note: User agents ought to provide guidance to users when setting
a preference, since users are rarely familiar with the details of a preference, since users are rarely familiar with the details of
language matching as described above. For example, users might language matching as described above. For example, users might
assume that on selecting "en-gb", they will be served any kind of assume that on selecting "en-gb", they will be served any kind of
English document if British English is not available. A user English document if British English is not available. A user
agent might suggest, in such a case, to add "en" to the list for agent might suggest, in such a case, to add "en" to the list for
better matching behavior. better matching behavior.
5.4. Authentication Credentials 8.5. Authentication Credentials
HTTP provides a general framework for access control and HTTP provides a general framework for access control and
authentication, via an extensible set of challenge-response authentication, via an extensible set of challenge-response
authentication schemes, which can be used by a server to challenge a authentication schemes, which can be used by a server to challenge a
client request and by a client to provide authentication information. client request and by a client to provide authentication information.
Two header fields are used for carrying authentication credentials, Two header fields are used for carrying authentication credentials.
as defined in [RFC7235]. Note that various custom mechanisms for Note that various custom mechanisms for user authentication use the
user authentication use the Cookie header field for this purpose, as Cookie header field for this purpose, as defined in [RFC6265].
defined in [RFC6265].
+---------------------+--------------------------+ +---------------------+---------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+---------------------+--------------------------+ +---------------------+---------------+
| Authorization | Section 4.2 of [RFC7235] | | Authorization | Section 8.5.3 |
| Proxy-Authorization | Section 4.4 of [RFC7235] | | Proxy-Authorization | Section 8.5.4 |
+---------------------+--------------------------+ +---------------------+---------------+
2.1. Challenge and Response 8.5.1. Challenge and Response
HTTP provides a simple challenge-response authentication framework HTTP provides a simple challenge-response authentication framework
that can be used by a server to challenge a client request and by a that can be used by a server to challenge a client request and by a
client to provide authentication information. It uses a case- client to provide authentication information. It uses a case-
insensitive token as a means to identify the authentication scheme, insensitive token as a means to identify the authentication scheme,
followed by additional information necessary for achieving followed by additional information necessary for achieving
authentication via that scheme. The latter can be either a comma- authentication via that scheme. The latter can be either a comma-
separated list of parameters or a single sequence of characters separated list of parameters or a single sequence of characters
capable of holding base64-encoded information. capable of holding base64-encoded information.
skipping to change at line 4626 skipping to change at page 110, line 19
token68 = 1*( ALPHA / DIGIT / token68 = 1*( ALPHA / DIGIT /
"-" / "." / "_" / "~" / "+" / "/" ) *"=" "-" / "." / "_" / "~" / "+" / "/" ) *"="
The token68 syntax allows the 66 unreserved URI characters The token68 syntax allows the 66 unreserved URI characters
([RFC3986]), plus a few others, so that it can hold a base64, ([RFC3986]), plus a few others, so that it can hold a base64,
base64url (URL and filename safe alphabet), base32, or base16 (hex) base64url (URL and filename safe alphabet), base32, or base16 (hex)
encoding, with or without padding, but excluding whitespace encoding, with or without padding, but excluding whitespace
([RFC4648]). ([RFC4648]).
A 401 (Unauthorized) response message is used by an origin server to A 401 (Unauthorized) response message is used by an origin server to
challenge the authorization of a user agent, including a challenge the authorization of a user agent, including a WWW-
WWW-Authenticate header field containing at least one challenge Authenticate header field containing at least one challenge
applicable to the requested resource. applicable to the requested resource.
A 407 (Proxy Authentication Required) response message is used by a A 407 (Proxy Authentication Required) response message is used by a
proxy to challenge the authorization of a client, including a proxy to challenge the authorization of a client, including a Proxy-
Proxy-Authenticate header field containing at least one challenge Authenticate header field containing at least one challenge
applicable to the proxy for the requested resource. applicable to the proxy for the requested resource.
challenge = auth-scheme [ 1*SP ( token68 / #auth-param ) ] challenge = auth-scheme [ 1*SP ( token68 / #auth-param ) ]
Note: Many clients fail to parse a challenge that contains an Note: Many clients fail to parse a challenge that contains an
unknown scheme. A workaround for this problem is to list well- unknown scheme. A workaround for this problem is to list well-
supported schemes (such as "basic") first. supported schemes (such as "basic") first.
A user agent that wishes to authenticate itself with an origin server A user agent that wishes to authenticate itself with an origin server
-- usually, but not necessarily, after receiving a 401 (Unauthorized) -- usually, but not necessarily, after receiving a 401 (Unauthorized)
skipping to change at line 4660 skipping to change at page 111, line 5
Both the Authorization field value and the Proxy-Authorization field Both the Authorization field value and the Proxy-Authorization field
value contain the client's credentials for the realm of the resource value contain the client's credentials for the realm of the resource
being requested, based upon a challenge received in a response being requested, based upon a challenge received in a response
(possibly at some point in the past). When creating their values, (possibly at some point in the past). When creating their values,
the user agent ought to do so by selecting the challenge with what it the user agent ought to do so by selecting the challenge with what it
considers to be the most secure auth-scheme that it understands, considers to be the most secure auth-scheme that it understands,
obtaining credentials from the user as appropriate. Transmission of obtaining credentials from the user as appropriate. Transmission of
credentials within header field values implies significant security credentials within header field values implies significant security
considerations regarding the confidentiality of the underlying considerations regarding the confidentiality of the underlying
connection, as described in Section 6.1. connection, as described in Section 11.14.1.
credentials = auth-scheme [ 1*SP ( token68 / #auth-param ) ] credentials = auth-scheme [ 1*SP ( token68 / #auth-param ) ]
Upon receipt of a request for a protected resource that omits Upon receipt of a request for a protected resource that omits
credentials, contains invalid credentials (e.g., a bad password) or credentials, contains invalid credentials (e.g., a bad password) or
partial credentials (e.g., when the authentication scheme requires partial credentials (e.g., when the authentication scheme requires
more than one round trip), an origin server SHOULD send a 401 more than one round trip), an origin server SHOULD send a 401
(Unauthorized) response that contains a WWW-Authenticate header field (Unauthorized) response that contains a WWW-Authenticate header field
with at least one (possibly new) challenge applicable to the with at least one (possibly new) challenge applicable to the
requested resource. requested resource.
Likewise, upon receipt of a request that omits proxy credentials or Likewise, upon receipt of a request that omits proxy credentials or
contains invalid or partial proxy credentials, a proxy that requires contains invalid or partial proxy credentials, a proxy that requires
authentication SHOULD generate a 407 (Proxy Authentication Required) authentication SHOULD generate a 407 (Proxy Authentication Required)
response that contains a Proxy-Authenticate header field with at response that contains a Proxy-Authenticate header field with at
least one (possibly new) challenge applicable to the proxy. least one (possibly new) challenge applicable to the proxy.
A server that receives valid credentials that are not adequate to A server that receives valid credentials that are not adequate to
gain access ought to respond with the 403 (Forbidden) status code gain access ought to respond with the 403 (Forbidden) status code
(Section 6.5.3 of [RFC7231]). (Section 9.5.4).
HTTP does not restrict applications to this simple challenge-response HTTP does not restrict applications to this simple challenge-response
framework for access authentication. Additional mechanisms can be framework for access authentication. Additional mechanisms can be
used, such as authentication at the transport level or via message used, such as authentication at the transport level or via message
encapsulation, and with additional header fields specifying encapsulation, and with additional header fields specifying
authentication information. However, such additional mechanisms are authentication information. However, such additional mechanisms are
not defined by this specification. not defined by this specification.
2.2. Protection Space (Realm) 8.5.2. Protection Space (Realm)
The "realm" authentication parameter is reserved for use by The "realm" authentication parameter is reserved for use by
authentication schemes that wish to indicate a scope of protection. authentication schemes that wish to indicate a scope of protection.
A protection space is defined by the canonical root URI (the scheme A protection space is defined by the canonical root URI (the scheme
and authority components of the effective request URI; see Section and authority components of the effective request URI; see
5.5 of [RFC7230]) of the server being accessed, in combination with Section 5.5) of the server being accessed, in combination with the
the realm value if present. These realms allow the protected realm value if present. These realms allow the protected resources
resources on a server to be partitioned into a set of protection on a server to be partitioned into a set of protection spaces, each
spaces, each with its own authentication scheme and/or authorization with its own authentication scheme and/or authorization database.
database. The realm value is a string, generally assigned by the The realm value is a string, generally assigned by the origin server,
origin server, that can have additional semantics specific to the that can have additional semantics specific to the authentication
authentication scheme. Note that a response can have multiple scheme. Note that a response can have multiple challenges with the
challenges with the same auth-scheme but with different realms. same auth-scheme but with different realms.
The protection space determines the domain over which credentials can The protection space determines the domain over which credentials can
be automatically applied. If a prior request has been authorized, be automatically applied. If a prior request has been authorized,
the user agent MAY reuse the same credentials for all other requests the user agent MAY reuse the same credentials for all other requests
within that protection space for a period of time determined by the within that protection space for a period of time determined by the
authentication scheme, parameters, and/or user preferences (such as a authentication scheme, parameters, and/or user preferences (such as a
configurable inactivity timeout). Unless specifically allowed by the configurable inactivity timeout). Unless specifically allowed by the
authentication scheme, a single protection space cannot extend authentication scheme, a single protection space cannot extend
outside the scope of its server. outside the scope of its server.
For historical reasons, a sender MUST only generate the quoted-string For historical reasons, a sender MUST only generate the quoted-string
syntax. Recipients might have to support both token and syntax. Recipients might have to support both token and quoted-
quoted-string syntax for maximum interoperability with existing string syntax for maximum interoperability with existing clients that
clients that have been accepting both notations for a long time. have been accepting both notations for a long time.
4.2. Authorization 8.5.3. Authorization
The "Authorization" header field allows a user agent to authenticate The "Authorization" header field allows a user agent to authenticate
itself with an origin server -- usually, but not necessarily, after itself with an origin server -- usually, but not necessarily, after
receiving a 401 (Unauthorized) response. Its value consists of receiving a 401 (Unauthorized) response. Its value consists of
credentials containing the authentication information of the user credentials containing the authentication information of the user
agent for the realm of the resource being requested. agent for the realm of the resource being requested.
Authorization = credentials Authorization = credentials
If a request is authenticated and a realm specified, the same If a request is authenticated and a realm specified, the same
credentials are presumed to be valid for all other requests within credentials are presumed to be valid for all other requests within
this realm (assuming that the authentication scheme itself does not this realm (assuming that the authentication scheme itself does not
require otherwise, such as credentials that vary according to a require otherwise, such as credentials that vary according to a
challenge value or using synchronized clocks). challenge value or using synchronized clocks).
A proxy forwarding a request MUST NOT modify any Authorization fields A proxy forwarding a request MUST NOT modify any Authorization fields
in that request. See Section 3.2 of [RFC7234] for details of and in that request. See Section 3.2 of [Caching] for details of and
requirements pertaining to handling of the Authorization field by requirements pertaining to handling of the Authorization field by
HTTP caches. HTTP caches.
4.4. Proxy-Authorization 8.5.4. Proxy-Authorization
The "Proxy-Authorization" header field allows the client to identify The "Proxy-Authorization" header field allows the client to identify
itself (or its user) to a proxy that requires authentication. Its itself (or its user) to a proxy that requires authentication. Its
value consists of credentials containing the authentication value consists of credentials containing the authentication
information of the client for the proxy and/or realm of the resource information of the client for the proxy and/or realm of the resource
being requested. being requested.
Proxy-Authorization = credentials Proxy-Authorization = credentials
Unlike Authorization, the Proxy-Authorization header field applies Unlike Authorization, the Proxy-Authorization header field applies
only to the next inbound proxy that demanded authentication using the only to the next inbound proxy that demanded authentication using the
Proxy-Authenticate field. When multiple proxies are used in a chain, Proxy-Authenticate field. When multiple proxies are used in a chain,
the Proxy-Authorization header field is consumed by the first inbound the Proxy-Authorization header field is consumed by the first inbound
proxy that was expecting to receive credentials. A proxy MAY relay proxy that was expecting to receive credentials. A proxy MAY relay
the credentials from the client request to the next proxy if that is the credentials from the client request to the next proxy if that is
the mechanism by which the proxies cooperatively authenticate a given the mechanism by which the proxies cooperatively authenticate a given
request. request.
X.X. [Authentication Scheme Extensibility] 8.5.5. Authentication Scheme Extensibility
This document defines HTTP/1.1 authentication in terms of the
architecture defined in "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" [RFC7230], including the general
framework previously described in "HTTP Authentication: Basic and
Digest Access Authentication" [RFC2617] and the related fields and
status codes previously defined in "Hypertext Transfer Protocol --
HTTP/1.1" [RFC2616].
The IANA Authentication Scheme Registry (Section 5.1) lists Aside from the general framework, this document does not specify any
registered authentication schemes and their corresponding authentication schemes. New and existing authentication schemes are
specifications, including the "basic" and "digest" authentication specified independently and ought to be registered within the
schemes previously defined by RFC 2617. "Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry".
For example, the "basic" and "digest" authentication schemes are
defined by RFC 7617 and RFC 7616, respectively.
5.1. Authentication Scheme Registry 8.5.5.1. Authentication Scheme Registry
The "Hypertext Transfer Protocol (HTTP) Authentication Scheme The "Hypertext Transfer Protocol (HTTP) Authentication Scheme
Registry" defines the namespace for the authentication schemes in Registry" defines the namespace for the authentication schemes in
challenges and credentials. It has been created and is now challenges and credentials. It is maintained at
maintained at <http://www.iana.org/assignments/http-authschemes>. <https://www.iana.org/assignments/http-authschemes>.
5.1.1. Procedure
Registrations MUST include the following fields: Registrations MUST include the following fields:
o Authentication Scheme Name o Authentication Scheme Name
o Pointer to specification text o Pointer to specification text
o Notes (optional) o Notes (optional)
Values to be added to this namespace require IETF Review (see Values to be added to this namespace require IETF Review (see
[RFC5226], Section 4.1). [RFC8126], Section 4.8).
5.1.2. Considerations for New Authentication Schemes 8.5.5.2. Considerations for New Authentication Schemes
There are certain aspects of the HTTP Authentication Framework that There are certain aspects of the HTTP Authentication framework that
put constraints on how new authentication schemes can work: put constraints on how new authentication schemes can work:
o HTTP authentication is presumed to be stateless: all of the o HTTP authentication is presumed to be stateless: all of the
information necessary to authenticate a request MUST be provided information necessary to authenticate a request MUST be provided
in the request, rather than be dependent on the server remembering in the request, rather than be dependent on the server remembering
prior requests. Authentication based on, or bound to, the prior requests. Authentication based on, or bound to, the
underlying connection is outside the scope of this specification underlying connection is outside the scope of this specification
and inherently flawed unless steps are taken to ensure that the and inherently flawed unless steps are taken to ensure that the
connection cannot be used by any party other than the connection cannot be used by any party other than the
authenticated user (see Section 2.3 of [RFC7230]). authenticated user (see Section 2.2).
o The authentication parameter "realm" is reserved for defining o The authentication parameter "realm" is reserved for defining
protection spaces as described in Section 2.2. New schemes MUST protection spaces as described in Section 8.5.2. New schemes MUST
NOT use it in a way incompatible with that definition. NOT use it in a way incompatible with that definition.
o The "token68" notation was introduced for compatibility with o The "token68" notation was introduced for compatibility with
existing authentication schemes and can only be used once per existing authentication schemes and can only be used once per
challenge or credential. Thus, new schemes ought to use the challenge or credential. Thus, new schemes ought to use the auth-
auth-param syntax instead, because otherwise future extensions param syntax instead, because otherwise future extensions will be
will be impossible. impossible.
o The parsing of challenges and credentials is defined by this o The parsing of challenges and credentials is defined by this
specification and cannot be modified by new authentication specification and cannot be modified by new authentication
schemes. When the auth-param syntax is used, all parameters ought schemes. When the auth-param syntax is used, all parameters ought
to support both token and quoted-string syntax, and syntactical to support both token and quoted-string syntax, and syntactical
constraints ought to be defined on the field value after parsing constraints ought to be defined on the field value after parsing
(i.e., quoted-string processing). This is necessary so that (i.e., quoted-string processing). This is necessary so that
recipients can use a generic parser that applies to all recipients can use a generic parser that applies to all
authentication schemes. authentication schemes.
skipping to change at line 4840 skipping to change at page 114, line 37
o Definitions of new schemes ought to define the treatment of o Definitions of new schemes ought to define the treatment of
unknown extension parameters. In general, a "must-ignore" rule is unknown extension parameters. In general, a "must-ignore" rule is
preferable to a "must-understand" rule, because otherwise it will preferable to a "must-understand" rule, because otherwise it will
be hard to introduce new parameters in the presence of legacy be hard to introduce new parameters in the presence of legacy
recipients. Furthermore, it's good to describe the policy for recipients. Furthermore, it's good to describe the policy for
defining new parameters (such as "update the specification" or defining new parameters (such as "update the specification" or
"use this registry"). "use this registry").
o Authentication schemes need to document whether they are usable in o Authentication schemes need to document whether they are usable in
origin-server authentication (i.e., using WWW-Authenticate), origin-server authentication (i.e., using WWW-Authenticate), and/
and/or proxy authentication (i.e., using Proxy-Authenticate). or proxy authentication (i.e., using Proxy-Authenticate).
o The credentials carried in an Authorization header field are o The credentials carried in an Authorization header field are
specific to the user agent and, therefore, have the same effect on specific to the user agent and, therefore, have the same effect on
HTTP caches as the "private" Cache-Control response directive HTTP caches as the "private" Cache-Control response directive
(Section 5.2.2.6 of [RFC7234]), within the scope of the request in (Section 5.2.2.7 of [Caching]), within the scope of the request in
which they appear. which they appear.
Therefore, new authentication schemes that choose not to carry Therefore, new authentication schemes that choose not to carry
credentials in the Authorization header field (e.g., using a newly credentials in the Authorization header field (e.g., using a newly
defined header field) will need to explicitly disallow caching, by defined header field) will need to explicitly disallow caching, by
mandating the use of either Cache-Control request directives mandating the use of Cache-Control response directives (e.g.,
(e.g., "no-store", Section 5.2.1.5 of [RFC7234]) or response "private").
directives (e.g., "private").
5.5. Request Context o Schemes using Authentication-Info, Proxy-Authentication-Info, or
any other authentication related response header field need to
consider and document the related security considerations (see
Section 11.14.4).
8.6. Request Context
The following request header fields provide additional information The following request header fields provide additional information
about the request context, including information about the user, user about the request context, including information about the user, user
agent, and resource behind the request. agent, and resource behind the request.
+-------------------+---------------+ +------------+---------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+-------------------+---------------+ +------------+---------------+
| From | Section 5.5.1 | | From | Section 8.6.1 |
| Referer | Section 5.5.2 | | Referer | Section 8.6.2 |
| User-Agent | Section 5.5.3 | | User-Agent | Section 8.6.3 |
+-------------------+---------------+ +------------+---------------+
5.5.1. From 8.6.1. From
The "From" header field contains an Internet email address for a The "From" header field contains an Internet email address for a
human user who controls the requesting user agent. The address ought human user who controls the requesting user agent. The address ought
to be machine-usable, as defined by "mailbox" in Section 3.4 of to be machine-usable, as defined by "mailbox" in Section 3.4 of
[RFC5322]: [RFC5322]:
From = mailbox From = mailbox
mailbox = <mailbox, see [RFC5322], Section 3.4> mailbox = <mailbox, see [RFC5322], Section 3.4>
skipping to change at line 4899 skipping to change at page 116, line 19
A robotic user agent SHOULD send a valid From header field so that A robotic user agent SHOULD send a valid From header field so that
the person responsible for running the robot can be contacted if the person responsible for running the robot can be contacted if
problems occur on servers, such as if the robot is sending excessive, problems occur on servers, such as if the robot is sending excessive,
unwanted, or invalid requests. unwanted, or invalid requests.
A server SHOULD NOT use the From header field for access control or A server SHOULD NOT use the From header field for access control or
authentication, since most recipients will assume that the field authentication, since most recipients will assume that the field
value is public information. value is public information.
5.5.2. Referer 8.6.2. Referer
The "Referer" [sic] header field allows the user agent to specify a The "Referer" [sic] header field allows the user agent to specify a
URI reference for the resource from which the target URI was obtained URI reference for the resource from which the target URI was obtained
(i.e., the "referrer", though the field name is misspelled). A user (i.e., the "referrer", though the field name is misspelled). A user
agent MUST NOT include the fragment and userinfo components of the agent MUST NOT include the fragment and userinfo components of the
URI reference [RFC3986], if any, when generating the Referer field URI reference [RFC3986], if any, when generating the Referer field
value. value.
Referer = absolute-URI / partial-URI Referer = absolute-URI / partial-URI
skipping to change at line 4936 skipping to change at page 117, line 7
The Referer field has the potential to reveal information about the The Referer field has the potential to reveal information about the
request context or browsing history of the user, which is a privacy request context or browsing history of the user, which is a privacy
concern if the referring resource's identifier reveals personal concern if the referring resource's identifier reveals personal
information (such as an account name) or a resource that is supposed information (such as an account name) or a resource that is supposed
to be confidential (such as behind a firewall or internal to a to be confidential (such as behind a firewall or internal to a
secured service). Most general-purpose user agents do not send the secured service). Most general-purpose user agents do not send the
Referer header field when the referring resource is a local "file" or Referer header field when the referring resource is a local "file" or
"data" URI. A user agent MUST NOT send a Referer header field in an "data" URI. A user agent MUST NOT send a Referer header field in an
unsecured HTTP request if the referring page was received with a unsecured HTTP request if the referring page was received with a
secure protocol. See Section 9.4 for additional security secure protocol. See Section 11.8 for additional security
considerations. considerations.
Some intermediaries have been known to indiscriminately remove Some intermediaries have been known to indiscriminately remove
Referer header fields from outgoing requests. This has the Referer header fields from outgoing requests. This has the
unfortunate side effect of interfering with protection against CSRF unfortunate side effect of interfering with protection against CSRF
attacks, which can be far more harmful to their users. attacks, which can be far more harmful to their users.
Intermediaries and user agent extensions that wish to limit Intermediaries and user agent extensions that wish to limit
information disclosure in Referer ought to restrict their changes to information disclosure in Referer ought to restrict their changes to
specific edits, such as replacing internal domain names with specific edits, such as replacing internal domain names with
pseudonyms or truncating the query and/or path components. An pseudonyms or truncating the query and/or path components. An
intermediary SHOULD NOT modify or delete the Referer header field intermediary SHOULD NOT modify or delete the Referer header field
when the field value shares the same scheme and host as the request when the field value shares the same scheme and host as the request
target. target.
5.5.3. User-Agent 8.6.3. User-Agent
The "User-Agent" header field contains information about the user The "User-Agent" header field contains information about the user
agent originating the request, which is often used by servers to help agent originating the request, which is often used by servers to help
identify the scope of reported interoperability problems, to work identify the scope of reported interoperability problems, to work
around or tailor responses to avoid particular user agent around or tailor responses to avoid particular user agent
limitations, and for analytics regarding browser or operating system limitations, and for analytics regarding browser or operating system
use. A user agent SHOULD send a User-Agent field in each request use. A user agent SHOULD send a User-Agent field in each request
unless specifically configured not to do so. unless specifically configured not to do so.
User-Agent = product *( RWS ( product / comment ) ) User-Agent = product *( RWS ( product / comment ) )
The User-Agent field-value consists of one or more product The User-Agent field value consists of one or more product
identifiers, each followed by zero or more comments (Section 3.2 of identifiers, each followed by zero or more comments
[RFC7230]), which together identify the user agent software and its (Section 4.4.1.3), which together identify the user agent software
significant subproducts. By convention, the product identifiers are and its significant subproducts. By convention, the product
listed in decreasing order of their significance for identifying the identifiers are listed in decreasing order of their significance for
user agent software. Each product identifier consists of a name and identifying the user agent software. Each product identifier
optional version. consists of a name and optional version.
product = token ["/" product-version] product = token ["/" product-version]
product-version = token product-version = token
A sender SHOULD limit generated product identifiers to what is A sender SHOULD limit generated product identifiers to what is
necessary to identify the product; a sender MUST NOT generate necessary to identify the product; a sender MUST NOT generate
advertising or other nonessential information within the product advertising or other nonessential information within the product
identifier. A sender SHOULD NOT generate information in identifier. A sender SHOULD NOT generate information in product-
product-version that is not a version identifier (i.e., successive version that is not a version identifier (i.e., successive versions
versions of the same product name ought to differ only in the of the same product name ought to differ only in the product-version
product-version portion of the product identifier). portion of the product identifier).
Example: Example:
User-Agent: CERN-LineMode/2.15 libwww/2.17b3 User-Agent: CERN-LineMode/2.15 libwww/2.17b3
A user agent SHOULD NOT generate a User-Agent field containing A user agent SHOULD NOT generate a User-Agent field containing
needlessly fine-grained detail and SHOULD limit the addition of needlessly fine-grained detail and SHOULD limit the addition of
subproducts by third parties. Overly long and detailed User-Agent subproducts by third parties. Overly long and detailed User-Agent
field values increase request latency and the risk of a user being field values increase request latency and the risk of a user being
identified against their wishes ("fingerprinting"). identified against their wishes ("fingerprinting").
skipping to change at line 5002 skipping to change at page 118, line 25
Likewise, implementations are encouraged not to use the product Likewise, implementations are encouraged not to use the product
tokens of other implementations in order to declare compatibility tokens of other implementations in order to declare compatibility
with them, as this circumvents the purpose of the field. If a user with them, as this circumvents the purpose of the field. If a user
agent masquerades as a different user agent, recipients can assume agent masquerades as a different user agent, recipients can assume
that the user intentionally desires to see responses tailored for that the user intentionally desires to see responses tailored for
that identified user agent, even if they might not work as well for that identified user agent, even if they might not work as well for
the actual user agent being used. the actual user agent being used.
9. Response Status Codes 9. Response Status Codes
The status-code element is a three-digit integer code giving the The (response) status code is a three-digit integer code giving the
result of the attempt to understand and satisfy the request. result of the attempt to understand and satisfy the request.
HTTP status codes are extensible. HTTP clients are not required to HTTP status codes are extensible. HTTP clients are not required to
understand the meaning of all registered status codes, though such understand the meaning of all registered status codes, though such
understanding is obviously desirable. However, a client MUST understanding is obviously desirable. However, a client MUST
understand the class of any status code, as indicated by the first understand the class of any status code, as indicated by the first
digit, and treat an unrecognized status code as being equivalent to digit, and treat an unrecognized status code as being equivalent to
the x00 status code of that class, with the exception that a the x00 status code of that class.
recipient MUST NOT cache a response with an unrecognized status code.
For example, if an unrecognized status code of 471 is received by a For example, if an unrecognized status code of 471 is received by a
client, the client can assume that there was something wrong with its client, the client can assume that there was something wrong with its
request and treat the response as if it had received a 400 (Bad request and treat the response as if it had received a 400 (Bad
Request) status code. The response message will usually contain a Request) status code. The response message will usually contain a
representation that explains the status. representation that explains the status.
The first digit of the status-code defines the class of response. The first digit of the status code defines the class of response.
The last two digits do not have any categorization role. There are The last two digits do not have any categorization role. There are
five values for the first digit: five values for the first digit:
o 1xx (Informational): The request was received, continuing process o 1xx (Informational): The request was received, continuing process
o 2xx (Successful): The request was successfully received, o 2xx (Successful): The request was successfully received,
understood, and accepted understood, and accepted
o 3xx (Redirection): Further action needs to be taken in order to o 3xx (Redirection): Further action needs to be taken in order to
complete the request complete the request
o 4xx (Client Error): The request contains bad syntax or cannot be o 4xx (Client Error): The request contains bad syntax or cannot be
fulfilled fulfilled
o 5xx (Server Error): The server failed to fulfill an apparently o 5xx (Server Error): The server failed to fulfill an apparently
valid request valid request
A single request can have multiple associated responses: zero or more
interim (non-final) responses with status codes in the
"informational" (1xx) range, followed by exactly one final response
with a status code in one of the other ranges.
9.1. Overview of Status Codes 9.1. Overview of Status Codes
The status codes listed below are defined in this specification, The status codes listed below are defined in this specification. The
Section 4 of [RFC7232], Section 4 of [RFC7233], and Section 3 of reason phrases listed here are only recommendations -- they can be
[RFC7235]. The reason phrases listed here are only recommendations replaced by local equivalents without affecting the protocol.
-- they can be replaced by local equivalents without affecting the
protocol.
Responses with status codes that are defined as cacheable by default Responses with status codes that are defined as heuristically
(e.g., 200, 203, 204, 206, 300, 301, 404, 405, 410, 414, and 501 in cacheable (e.g., 200, 203, 204, 206, 300, 301, 404, 405, 410, 414,
this specification) can be reused by a cache with heuristic and 501 in this specification) can be reused by a cache with
expiration unless otherwise indicated by the method definition or heuristic expiration unless otherwise indicated by the method
explicit cache controls [RFC7234]; all other status codes are not definition or explicit cache controls [Caching]; all other status
cacheable by default. codes are not heuristically cacheable.
+------+-------------------------------+--------------------------+ +-------+-------------------------------+-----------------+
| Code | Reason-Phrase | Defined in... | | Value | Description | Reference |
+------+-------------------------------+--------------------------+ +-------+-------------------------------+-----------------+
| 100 | Continue | Section 6.2.1 | | 100 | Continue | Section 9.2.1 |
| 101 | Switching Protocols | Section 6.2.2 | | 101 | Switching Protocols | Section 9.2.2 |
| 200 | OK | Section 6.3.1 | | 200 | OK | Section 9.3.1 |
| 201 | Created | Section 6.3.2 | | 201 | Created | Section 9.3.2 |
| 202 | Accepted | Section 6.3.3 | | 202 | Accepted | Section 9.3.3 |
| 203 | Non-Authoritative Information | Section 6.3.4 | | 203 | Non-Authoritative Information | Section 9.3.4 |
| 204 | No Content | Section 6.3.5 | | 204 | No Content | Section 9.3.5 |
| 205 | Reset Content | Section 6.3.6 | | 205 | Reset Content | Section 9.3.6 |
| 206 | Partial Content | Section 4.1 of [RFC7233] | | 206 | Partial Content | Section 9.3.7 |
| 300 | Multiple Choices | Section 6.4.1 | | 300 | Multiple Choices | Section 9.4.1 |
| 301 | Moved Permanently | Section 6.4.2 | | 301 | Moved Permanently | Section 9.4.2 |
| 302 | Found | Section 6.4.3 | | 302 | Found | Section 9.4.3 |
| 303 | See Other | Section 6.4.4 | | 303 | See Other | Section 9.4.4 |
| 304 | Not Modified | Section 4.1 of [RFC7232] | | 304 | Not Modified | Section 9.4.5 |
| 305 | Use Proxy | Section 6.4.5 | | 305 | Use Proxy | Section 9.4.6 |
| 307 | Temporary Redirect | Section 6.4.7 | | 306 | (Unused) | Section 9.4.7 |
| 400 | Bad Request | Section 6.5.1 | | 307 | Temporary Redirect | Section 9.4.8 |
| 401 | Unauthorized | Section 3.1 of [RFC7235] | | 308 | Permanent Redirect | Section 9.4.9 |
| 402 | Payment Required | Section 6.5.2 | | 400 | Bad Request | Section 9.5.1 |
| 403 | Forbidden | Section 6.5.3 | | 401 | Unauthorized | Section 9.5.2 |
| 404 | Not Found | Section 6.5.4 | | 402 | Payment Required | Section 9.5.3 |
| 405 | Method Not Allowed | Section 6.5.5 | | 403 | Forbidden | Section 9.5.4 |
| 406 | Not Acceptable | Section 6.5.6 | | 404 | Not Found | Section 9.5.5 |
| 407 | Proxy Authentication Required | Section 3.2 of [RFC7235] | | 405 | Method Not Allowed | Section 9.5.6 |
| 408 | Request Timeout | Section 6.5.7 | | 406 | Not Acceptable | Section 9.5.7 |
| 409 | Conflict | Section 6.5.8 | | 407 | Proxy Authentication Required | Section 9.5.8 |
| 410 | Gone | Section 6.5.9 | | 408 | Request Timeout | Section 9.5.9 |
| 411 | Length Required | Section 6.5.10 | | 409 | Conflict | Section 9.5.10 |
| 412 | Precondition Failed | Section 4.2 of [RFC7232] | | 410 | Gone | Section 9.5.11 |
| 413 | Payload Too Large | Section 6.5.11 | | 411 | Length Required | Section 9.5.12 |
| 414 | URI Too Long | Section 6.5.12 | | 412 | Precondition Failed | Section 9.5.13 |
| 415 | Unsupported Media Type | Section 6.5.13 | | 413 | Payload Too Large | Section 9.5.14 |
| 416 | Range Not Satisfiable | Section 4.4 of [RFC7233] | | 414 | URI Too Long | Section 9.5.15 |
| 417 | Expectation Failed | Section 6.5.14 | | 415 | Unsupported Media Type | Section 9.5.16 |
| 426 | Upgrade Required | Section 6.5.15 | | 416 | Range Not Satisfiable | Section 9.5.17 |
| 500 | Internal Server Error | Section 6.6.1 | | 417 | Expectation Failed | Section 9.5.18 |
| 501 | Not Implemented | Section 6.6.2 | | 418 | (Unused) | Section 9.5.19 |
| 502 | Bad Gateway | Section 6.6.3 | | 422 | Unprocessable Payload | Section 9.5.20 |
| 503 | Service Unavailable | Section 6.6.4 | | 426 | Upgrade Required | Section 9.5.21 |
| 504 | Gateway Timeout | Section 6.6.5 | | 500 | Internal Server Error | Section 9.6.1 |
| 505 | HTTP Version Not Supported | Section 6.6.6 | | 501 | Not Implemented | Section 9.6.2 |
+------+-------------------------------+--------------------------+ | 502 | Bad Gateway | Section 9.6.3 |
| 503 | Service Unavailable | Section 9.6.4 |
| 504 | Gateway Timeout | Section 9.6.5 |
| 505 | HTTP Version Not Supported | Section 9.6.6 |
+-------+-------------------------------+-----------------+
Table 6
Note that this list is not exhaustive -- it does not include Note that this list is not exhaustive -- it does not include
extension status codes defined in other specifications. The complete extension status codes defined in other specifications (Section 9.7).
list of status codes is maintained by IANA. See Section 8.2 for
details.
6.2. Informational 1xx 9.2. Informational 1xx
The 1xx (Informational) class of status code indicates an interim The 1xx (Informational) class of status code indicates an interim
response for communicating connection status or request progress response for communicating connection status or request progress
prior to completing the requested action and sending a final prior to completing the requested action and sending a final
response. 1xx responses are terminated by the first empty line after response. 1xx responses are terminated by the first empty line after
the status-line (the empty line signaling the end of the header the status-line (the empty line signaling the end of the header
section). Since HTTP/1.0 did not define any 1xx status codes, a section). Since HTTP/1.0 did not define any 1xx status codes, a
server MUST NOT send a 1xx response to an HTTP/1.0 client. server MUST NOT send a 1xx response to an HTTP/1.0 client.
A client MUST be able to parse one or more 1xx responses received A client MUST be able to parse one or more 1xx responses received
prior to a final response, even if the client does not expect one. A prior to a final response, even if the client does not expect one. A
user agent MAY ignore unexpected 1xx responses. user agent MAY ignore unexpected 1xx responses.
A proxy MUST forward 1xx responses unless the proxy itself requested A proxy MUST forward 1xx responses unless the proxy itself requested
the generation of the 1xx response. For example, if a proxy adds an the generation of the 1xx response. For example, if a proxy adds an
"Expect: 100-continue" field when it forwards a request, then it need "Expect: 100-continue" field when it forwards a request, then it need
not forward the corresponding 100 (Continue) response(s). not forward the corresponding 100 (Continue) response(s).
6.2.1. 100 Continue 9.2.1. 100 Continue
The 100 (Continue) status code indicates that the initial part of a The 100 (Continue) status code indicates that the initial part of a
request has been received and has not yet been rejected by the request has been received and has not yet been rejected by the
server. The server intends to send a final response after the server. The server intends to send a final response after the
request has been fully received and acted upon. request has been fully received and acted upon.
When the request contains an Expect header field that includes a When the request contains an Expect header field that includes a
100-continue expectation, the 100 response indicates that the server 100-continue expectation, the 100 response indicates that the server
wishes to receive the request payload body, as described in wishes to receive the request payload body, as described in
Section 5.1.1. The client ought to continue sending the request and Section 8.1.1. The client ought to continue sending the request and
discard the 100 response. discard the 100 response.
If the request did not contain an Expect header field containing the If the request did not contain an Expect header field containing the
100-continue expectation, the client can simply discard this interim 100-continue expectation, the client can simply discard this interim
response. response.
6.2.2. 101 Switching Protocols 9.2.2. 101 Switching Protocols
The 101 (Switching Protocols) status code indicates that the server The 101 (Switching Protocols) status code indicates that the server
understands and is willing to comply with the client's request, via understands and is willing to comply with the client's request, via
the Upgrade header field (Section 6.7 of [RFC7230]), for a change in the Upgrade header field (Section 9.9 of [Messaging]), for a change
the application protocol being used on this connection. The server in the application protocol being used on this connection. The
MUST generate an Upgrade header field in the response that indicates server MUST generate an Upgrade header field in the response that
which protocol(s) will be switched to immediately after the empty indicates which protocol(s) will be switched to immediately after the
line that terminates the 101 response. empty line that terminates the 101 response.
It is assumed that the server will only agree to switch protocols It is assumed that the server will only agree to switch protocols
when it is advantageous to do so. For example, switching to a newer when it is advantageous to do so. For example, switching to a newer
version of HTTP might be advantageous over older versions, and version of HTTP might be advantageous over older versions, and
switching to a real-time, synchronous protocol might be advantageous switching to a real-time, synchronous protocol might be advantageous
when delivering resources that use such features. when delivering resources that use such features.
6.3. Successful 2xx 9.3. Successful 2xx
The 2xx (Successful) class of status code indicates that the client's The 2xx (Successful) class of status code indicates that the client's
request was successfully received, understood, and accepted. request was successfully received, understood, and accepted.
6.3.1. 200 OK 9.3.1. 200 OK
The 200 (OK) status code indicates that the request has succeeded. The 200 (OK) status code indicates that the request has succeeded.
The payload sent in a 200 response depends on the request method. The payload sent in a 200 response depends on the request method.
For the methods defined by this specification, the intended meaning For the methods defined by this specification, the intended meaning
of the payload can be summarized as: of the payload can be summarized as:
GET a representation of the target resource; GET a representation of the target resource;
HEAD the same representation as GET, but without the representation HEAD the same representation as GET, but without the representation
data; data;
skipping to change at line 5189 skipping to change at page 122, line 27
TRACE a representation of the request message as received by the end TRACE a representation of the request message as received by the end
server. server.
Aside from responses to CONNECT, a 200 response always has a payload, Aside from responses to CONNECT, a 200 response always has a payload,
though an origin server MAY generate a payload body of zero length. though an origin server MAY generate a payload body of zero length.
If no payload is desired, an origin server ought to send 204 (No If no payload is desired, an origin server ought to send 204 (No
Content) instead. For CONNECT, no payload is allowed because the Content) instead. For CONNECT, no payload is allowed because the
successful result is a tunnel, which begins immediately after the 200 successful result is a tunnel, which begins immediately after the 200
response header section. response header section.
A 200 response is cacheable by default; i.e., unless otherwise A 200 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.3.2. 201 Created 9.3.2. 201 Created
The 201 (Created) status code indicates that the request has been The 201 (Created) status code indicates that the request has been
fulfilled and has resulted in one or more new resources being fulfilled and has resulted in one or more new resources being
created. The primary resource created by the request is identified created. The primary resource created by the request is identified
by either a Location header field in the response or, if no Location by either a Location header field in the response or, if no Location
field is received, by the effective request URI. field is received, by the effective request URI.
The 201 response payload typically describes and links to the The 201 response payload typically describes and links to the
resource(s) created. See Section 7.2 for a discussion of the meaning resource(s) created. See Section 10.2 for a discussion of the
and purpose of validator header fields, such as ETag and meaning and purpose of validator header fields, such as ETag and
Last-Modified, in a 201 response. Last-Modified, in a 201 response.
6.3.3. 202 Accepted 9.3.3. 202 Accepted
The 202 (Accepted) status code indicates that the request has been The 202 (Accepted) status code indicates that the request has been
accepted for processing, but the processing has not been completed. accepted for processing, but the processing has not been completed.
The request might or might not eventually be acted upon, as it might The request might or might not eventually be acted upon, as it might
be disallowed when processing actually takes place. There is no be disallowed when processing actually takes place. There is no
facility in HTTP for re-sending a status code from an asynchronous facility in HTTP for re-sending a status code from an asynchronous
operation. operation.
The 202 response is intentionally noncommittal. Its purpose is to The 202 response is intentionally noncommittal. Its purpose is to
allow a server to accept a request for some other process (perhaps a allow a server to accept a request for some other process (perhaps a
batch-oriented process that is only run once per day) without batch-oriented process that is only run once per day) without
requiring that the user agent's connection to the server persist requiring that the user agent's connection to the server persist
until the process is completed. The representation sent with this until the process is completed. The representation sent with this
response ought to describe the request's current status and point to response ought to describe the request's current status and point to
(or embed) a status monitor that can provide the user with an (or embed) a status monitor that can provide the user with an
estimate of when the request will be fulfilled. estimate of when the request will be fulfilled.
6.3.4. 203 Non-Authoritative Information 9.3.4. 203 Non-Authoritative Information
The 203 (Non-Authoritative Information) status code indicates that The 203 (Non-Authoritative Information) status code indicates that
the request was successful but the enclosed payload has been modified the request was successful but the enclosed payload has been modified
from that of the origin server's 200 (OK) response by a transforming from that of the origin server's 200 (OK) response by a transforming
proxy (Section 5.7.2 of [RFC7230]). This status code allows the proxy (Section 5.7.2). This status code allows the proxy to notify
proxy to notify recipients when a transformation has been applied, recipients when a transformation has been applied, since that
since that knowledge might impact later decisions regarding the knowledge might impact later decisions regarding the content. For
content. For example, future cache validation requests for the example, future cache validation requests for the content might only
content might only be applicable along the same request path (through be applicable along the same request path (through the same proxies).
the same proxies).
The 203 response is similar to the Warning code of 214 Transformation The 203 response is similar to the Warning code of 214 Transformation
Applied (Section 5.5 of [RFC7234]), which has the advantage of being Applied (Section 5.5 of [Caching]), which has the advantage of being
applicable to responses with any status code. applicable to responses with any status code.
A 203 response is cacheable by default; i.e., unless otherwise A 203 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.3.5. 204 No Content 9.3.5. 204 No Content
The 204 (No Content) status code indicates that the server has The 204 (No Content) status code indicates that the server has
successfully fulfilled the request and that there is no additional successfully fulfilled the request and that there is no additional
content to send in the response payload body. Metadata in the content to send in the response payload body. Metadata in the
response header fields refer to the target resource and its selected response header fields refer to the target resource and its selected
representation after the requested action was applied. representation after the requested action was applied.
For example, if a 204 status code is received in response to a PUT For example, if a 204 status code is received in response to a PUT
request and the response contains an ETag header field, then the PUT request and the response contains an ETag field, then the PUT was
was successful and the ETag field-value contains the entity-tag for successful and the ETag field value contains the entity-tag for the
the new representation of that target resource. new representation of that target resource.
The 204 response allows a server to indicate that the action has been The 204 response allows a server to indicate that the action has been
successfully applied to the target resource, while implying that the successfully applied to the target resource, while implying that the
user agent does not need to traverse away from its current "document user agent does not need to traverse away from its current "document
view" (if any). The server assumes that the user agent will provide view" (if any). The server assumes that the user agent will provide
some indication of the success to its user, in accord with its own some indication of the success to its user, in accord with its own
interface, and apply any new or updated metadata in the response to interface, and apply any new or updated metadata in the response to
its active representation. its active representation.
For example, a 204 status code is commonly used with document editing For example, a 204 status code is commonly used with document editing
interfaces corresponding to a "save" action, such that the document interfaces corresponding to a "save" action, such that the document
being saved remains available to the user for editing. It is also being saved remains available to the user for editing. It is also
frequently used with interfaces that expect automated data transfers frequently used with interfaces that expect automated data transfers
to be prevalent, such as within distributed version control systems. to be prevalent, such as within distributed version control systems.
A 204 response is terminated by the first empty line after the header A 204 response is terminated by the first empty line after the header
fields because it cannot contain a message body. fields because it cannot contain a message body.
A 204 response is cacheable by default; i.e., unless otherwise A 204 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.3.6. 205 Reset Content 9.3.6. 205 Reset Content
The 205 (Reset Content) status code indicates that the server has The 205 (Reset Content) status code indicates that the server has
fulfilled the request and desires that the user agent reset the fulfilled the request and desires that the user agent reset the
"document view", which caused the request to be sent, to its original "document view", which caused the request to be sent, to its original
state as received from the origin server. state as received from the origin server.
This response is intended to support a common data entry use case This response is intended to support a common data entry use case
where the user receives content that supports data entry (a form, where the user receives content that supports data entry (a form,
notepad, canvas, etc.), enters or manipulates data in that space, notepad, canvas, etc.), enters or manipulates data in that space,
causes the entered data to be submitted in a request, and then the causes the entered data to be submitted in a request, and then the
skipping to change at line 5303 skipping to change at page 124, line 43
provided, a server MUST NOT generate a payload in a 205 response. In provided, a server MUST NOT generate a payload in a 205 response. In
other words, a server MUST do one of the following for a 205 other words, a server MUST do one of the following for a 205
response: a) indicate a zero-length body for the response by response: a) indicate a zero-length body for the response by
including a Content-Length header field with a value of 0; b) including a Content-Length header field with a value of 0; b)
indicate a zero-length payload for the response by including a indicate a zero-length payload for the response by including a
Transfer-Encoding header field with a value of chunked and a message Transfer-Encoding header field with a value of chunked and a message
body consisting of a single chunk of zero-length; or, c) close the body consisting of a single chunk of zero-length; or, c) close the
connection immediately after sending the blank line terminating the connection immediately after sending the blank line terminating the
header section. header section.
4.1. 206 Partial Content 9.3.7. 206 Partial Content
The 206 (Partial Content) status code indicates that the server is The 206 (Partial Content) status code indicates that the server is
successfully fulfilling a range request for the target resource by successfully fulfilling a range request for the target resource by
transferring one or more parts of the selected representation that transferring one or more parts of the selected representation.
correspond to the satisfiable ranges found in the request's Range
header field (Section 3.1).
When a 206 response is generated, the server MUST generate the When a 206 response is generated, the server MUST generate the
following header fields, in addition to those required above, if the following header fields, in addition to those required in the
field would have been sent in a 200 (OK) response to the same subsections below, if the field would have been sent in a 200 (OK)
request: Date, Cache-Control, ETag, Expires, Content-Location, and response to the same request: Date, Cache-Control, ETag, Expires,
Vary. Content-Location, and Vary.
If a 206 is generated in response to a request with an If-Range If a 206 is generated in response to a request with an If-Range
header field, the sender SHOULD NOT generate other representation header field, the sender SHOULD NOT generate other representation
header fields beyond those required above, because the client is header fields beyond those required, because the client is understood
understood to already have a prior response containing those header to already have a prior response containing those header fields.
fields. Otherwise, the sender MUST generate all of the Otherwise, the sender MUST generate all of the representation header
representation header fields that would have been sent in a 200 (OK) fields that would have been sent in a 200 (OK) response to the same
response to the same request. request.
A 206 response is cacheable by default; i.e., unless otherwise A 206 response is heuristically cacheable; i.e., unless otherwise
indicated by explicit cache controls (see Section 4.2.2 of indicated by explicit cache controls (see Section 4.2.2 of
[RFC7234]). [Caching]).
9.3.7.1. Single Part
If a single part is being transferred, the server generating the 206 If a single part is being transferred, the server generating the 206
response MUST generate a Content-Range header field, describing what response MUST generate a Content-Range header field, describing what
range of the selected representation is enclosed, and a payload range of the selected representation is enclosed, and a payload
consisting of the range. For example: consisting of the range. For example:
HTTP/1.1 206 Partial Content HTTP/1.1 206 Partial Content
Date: Wed, 15 Nov 1995 06:25:24 GMT Date: Wed, 15 Nov 1995 06:25:24 GMT
Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT
Content-Range: bytes 21010-47021/47022 Content-Range: bytes 21010-47021/47022
Content-Length: 26012 Content-Length: 26012
Content-Type: image/gif Content-Type: image/gif
... 26012 bytes of partial image data ... ... 26012 bytes of partial image data ...
9.3.7.2. Multiple Parts
If multiple parts are being transferred, the server generating the If multiple parts are being transferred, the server generating the
206 response MUST generate a "multipart/byteranges" payload, as 206 response MUST generate a "multipart/byteranges" payload, as
defined in Appendix A, and a Content-Type header field containing the defined in Section 6.3.5, and a Content-Type header field containing
multipart/byteranges media type and its required boundary parameter. the multipart/byteranges media type and its required boundary
To avoid confusion with single-part responses, a server MUST NOT parameter. To avoid confusion with single-part responses, a server
generate a Content-Range header field in the HTTP header section of a MUST NOT generate a Content-Range header field in the HTTP header
multiple part response (this field will be sent in each part section of a multiple part response (this field will be sent in each
instead). part instead).
Within the header area of each body part in the multipart payload, Within the header area of each body part in the multipart payload,
the server MUST generate a Content-Range header field corresponding the server MUST generate a Content-Range header field corresponding
to the range being enclosed in that body part. If the selected to the range being enclosed in that body part. If the selected
representation would have had a Content-Type header field in a 200 representation would have had a Content-Type header field in a 200
(OK) response, the server SHOULD generate that same Content-Type (OK) response, the server SHOULD generate that same Content-Type
field in the header area of each body part. For example: field in the header area of each body part. For example:
HTTP/1.1 206 Partial Content HTTP/1.1 206 Partial Content
Date: Wed, 15 Nov 1995 06:25:24 GMT Date: Wed, 15 Nov 1995 06:25:24 GMT
skipping to change at line 5380 skipping to change at page 126, line 26
--THIS_STRING_SEPARATES --THIS_STRING_SEPARATES
Content-Type: application/pdf Content-Type: application/pdf
Content-Range: bytes 7000-7999/8000 Content-Range: bytes 7000-7999/8000
...the second range ...the second range
--THIS_STRING_SEPARATES-- --THIS_STRING_SEPARATES--
When multiple ranges are requested, a server MAY coalesce any of the When multiple ranges are requested, a server MAY coalesce any of the
ranges that overlap, or that are separated by a gap that is smaller ranges that overlap, or that are separated by a gap that is smaller
than the overhead of sending multiple parts, regardless of the order than the overhead of sending multiple parts, regardless of the order
in which the corresponding byte-range-spec appeared in the received in which the corresponding range-spec appeared in the received Range
Range header field. Since the typical overhead between parts of a header field. Since the typical overhead between parts of a
multipart/byteranges payload is around 80 bytes, depending on the multipart/byteranges payload is around 80 bytes, depending on the
selected representation's media type and the chosen boundary selected representation's media type and the chosen boundary
parameter length, it can be less efficient to transfer many small parameter length, it can be less efficient to transfer many small
disjoint parts than it is to transfer the entire selected disjoint parts than it is to transfer the entire selected
representation. representation.
A server MUST NOT generate a multipart response to a request for a A server MUST NOT generate a multipart response to a request for a
single range, since a client that does not request multiple parts single range, since a client that does not request multiple parts
might not support multipart responses. However, a server MAY might not support multipart responses. However, a server MAY
generate a multipart/byteranges payload with only a single body part generate a multipart/byteranges payload with only a single body part
if multiple ranges were requested and only one range was found to be if multiple ranges were requested and only one range was found to be
satisfiable or only one range remained after coalescing. A client satisfiable or only one range remained after coalescing. A client
that cannot process a multipart/byteranges response MUST NOT generate that cannot process a multipart/byteranges response MUST NOT generate
a request that asks for multiple ranges. a request that asks for multiple ranges.
When a multipart response payload is generated, the server SHOULD When a multipart response payload is generated, the server SHOULD
send the parts in the same order that the corresponding send the parts in the same order that the corresponding range-spec
byte-range-spec appeared in the received Range header field, appeared in the received Range header field, excluding those ranges
excluding those ranges that were deemed unsatisfiable or that were that were deemed unsatisfiable or that were coalesced into other
coalesced into other ranges. A client that receives a multipart ranges. A client that receives a multipart response MUST inspect the
response MUST inspect the Content-Range header field present in each Content-Range header field present in each body part in order to
body part in order to determine which range is contained in that body determine which range is contained in that body part; a client cannot
part; a client cannot rely on receiving the same ranges that it rely on receiving the same ranges that it requested, nor the same
requested, nor the same order that it requested. order that it requested.
4.3. Combining Ranges 9.3.7.3. Combining Parts
A response might transfer only a subrange of a representation if the A response might transfer only a subrange of a representation if the
connection closed prematurely or if the request used one or more connection closed prematurely or if the request used one or more
Range specifications. After several such transfers, a client might Range specifications. After several such transfers, a client might
have received several ranges of the same representation. These have received several ranges of the same representation. These
ranges can only be safely combined if they all have in common the ranges can only be safely combined if they all have in common the
same strong validator (Section 2.1 of [RFC7232]). same strong validator (Section 10.2.1).
A client that has received multiple partial responses to GET requests A client that has received multiple partial responses to GET requests
on a target resource MAY combine those responses into a larger on a target resource MAY combine those responses into a larger
continuous range if they share the same strong validator. continuous range if they share the same strong validator.
If the most recent response is an incomplete 200 (OK) response, then If the most recent response is an incomplete 200 (OK) response, then
the header fields of that response are used for any combined response the header fields of that response are used for any combined response
and replace those of the matching stored responses. and replace those of the matching stored responses.
If the most recent response is a 206 (Partial Content) response and If the most recent response is a 206 (Partial Content) response and
skipping to change at line 5448 skipping to change at page 127, line 46
representation, then the client MUST process the combined response as representation, then the client MUST process the combined response as
if it were a complete 200 (OK) response, including a Content-Length if it were a complete 200 (OK) response, including a Content-Length
header field that reflects the complete length. Otherwise, the header field that reflects the complete length. Otherwise, the
client MUST process the set of continuous ranges as one of the client MUST process the set of continuous ranges as one of the
following: an incomplete 200 (OK) response if the combined response following: an incomplete 200 (OK) response if the combined response
is a prefix of the representation, a single 206 (Partial Content) is a prefix of the representation, a single 206 (Partial Content)
response containing a multipart/byteranges body, or multiple 206 response containing a multipart/byteranges body, or multiple 206
(Partial Content) responses, each with one continuous range that is (Partial Content) responses, each with one continuous range that is
indicated by a Content-Range header field. indicated by a Content-Range header field.
6.4. Redirection 3xx 9.4. Redirection 3xx
The 3xx (Redirection) class of status code indicates that further The 3xx (Redirection) class of status code indicates that further
action needs to be taken by the user agent in order to fulfill the action needs to be taken by the user agent in order to fulfill the
request. If a Location header field (Section 7.1.2) is provided, the request. If a Location header field (Section 10.1.2) is provided,
user agent MAY automatically redirect its request to the URI the user agent MAY automatically redirect its request to the URI
referenced by the Location field value, even if the specific status referenced by the Location field value, even if the specific status
code is not understood. Automatic redirection needs to done with code is not understood. Automatic redirection needs to be done with
care for methods not known to be safe, as defined in Section 4.2.1, care for methods not known to be safe, as defined in Section 7.2.1,
since the user might not wish to redirect an unsafe request. since the user might not wish to redirect an unsafe request.
There are several types of redirects: There are several types of redirects:
1. Redirects that indicate the resource might be available at a 1. Redirects that indicate the resource might be available at a
different URI, as provided by the Location field, as in the different URI, as provided by the Location field, as in the
status codes 301 (Moved Permanently), 302 (Found), and 307 status codes 301 (Moved Permanently), 302 (Found), 307 (Temporary
(Temporary Redirect). Redirect), and 308 (Permanent Redirect).
2. Redirection that offers a choice of matching resources, each 2. Redirection that offers a choice of matching resources, each
capable of representing the original request target, as in the capable of representing the original request target, as in the
300 (Multiple Choices) status code. 300 (Multiple Choices) status code.
3. Redirection to a different resource, identified by the Location 3. Redirection to a different resource, identified by the Location
field, that can represent an indirect response to the request, as field, that can represent an indirect response to the request, as
in the 303 (See Other) status code. in the 303 (See Other) status code.
4. Redirection to a previously cached result, as in the 304 (Not 4. Redirection to a previously cached result, as in the 304 (Not
skipping to change at line 5487 skipping to change at page 128, line 36
Note: In HTTP/1.0, the status codes 301 (Moved Permanently) and Note: In HTTP/1.0, the status codes 301 (Moved Permanently) and
302 (Found) were defined for the first type of redirect 302 (Found) were defined for the first type of redirect
([RFC1945], Section 9.3). Early user agents split on whether the ([RFC1945], Section 9.3). Early user agents split on whether the
method applied to the redirect target would be the same as the method applied to the redirect target would be the same as the
original request or would be rewritten as GET. Although HTTP original request or would be rewritten as GET. Although HTTP
originally defined the former semantics for 301 and 302 (to match originally defined the former semantics for 301 and 302 (to match
its original implementation at CERN), and defined 303 (See Other) its original implementation at CERN), and defined 303 (See Other)
to match the latter semantics, prevailing practice gradually to match the latter semantics, prevailing practice gradually
converged on the latter semantics for 301 and 302 as well. The converged on the latter semantics for 301 and 302 as well. The
first revision of HTTP/1.1 added 307 (Temporary Redirect) to first revision of HTTP/1.1 added 307 (Temporary Redirect) to
indicate the former semantics without being impacted by divergent indicate the former semantics of 302 without being impacted by
practice. Over 10 years later, most user agents still do method divergent practice. For the same reason, 308 (Permanent Redirect)
rewriting for 301 and 302; therefore, this specification makes was later on added in [RFC7538] to match 301. Over 10 years
that behavior conformant when the original request is POST. later, most user agents still do method rewriting for 301 and 302;
therefore, [RFC7231] made that behavior conformant when the
original request is POST.
A client SHOULD detect and intervene in cyclical redirections (i.e., A client SHOULD detect and intervene in cyclical redirections (i.e.,
"infinite" redirection loops). "infinite" redirection loops).
Note: An earlier version of this specification recommended a Note: An earlier version of this specification recommended a
maximum of five redirections ([RFC2068], Section 10.3). Content maximum of five redirections ([RFC2068], Section 10.3). Content
developers need to be aware that some clients might implement such developers need to be aware that some clients might implement such
a fixed limitation. a fixed limitation.
6.4.1. 300 Multiple Choices 9.4.1. 300 Multiple Choices
The 300 (Multiple Choices) status code indicates that the target The 300 (Multiple Choices) status code indicates that the target
resource has more than one representation, each with its own more resource has more than one representation, each with its own more
specific identifier, and information about the alternatives is being specific identifier, and information about the alternatives is being
provided so that the user (or user agent) can select a preferred provided so that the user (or user agent) can select a preferred
representation by redirecting its request to one or more of those representation by redirecting its request to one or more of those
identifiers. In other words, the server desires that the user agent identifiers. In other words, the server desires that the user agent
engage in reactive negotiation to select the most appropriate engage in reactive negotiation to select the most appropriate
representation(s) for its needs (Section 3.4). representation(s) for its needs (Section 6.4).
If the server has a preferred choice, the server SHOULD generate a If the server has a preferred choice, the server SHOULD generate a
Location header field containing a preferred choice's URI reference. Location header field containing a preferred choice's URI reference.
The user agent MAY use the Location field value for automatic The user agent MAY use the Location field value for automatic
redirection. redirection.
For request methods other than HEAD, the server SHOULD generate a For request methods other than HEAD, the server SHOULD generate a
payload in the 300 response containing a list of representation payload in the 300 response containing a list of representation
metadata and URI reference(s) from which the user or user agent can metadata and URI reference(s) from which the user or user agent can
choose the one most preferred. The user agent MAY make a selection choose the one most preferred. The user agent MAY make a selection
from that list automatically if it understands the provided media from that list automatically if it understands the provided media
type. A specific format for automatic selection is not defined by type. A specific format for automatic selection is not defined by
this specification because HTTP tries to remain orthogonal to the this specification because HTTP tries to remain orthogonal to the
definition of its payloads. In practice, the representation is definition of its payloads. In practice, the representation is
provided in some easily parsed format believed to be acceptable to provided in some easily parsed format believed to be acceptable to
the user agent, as determined by shared design or content the user agent, as determined by shared design or content
negotiation, or in some commonly accepted hypertext format. negotiation, or in some commonly accepted hypertext format.
A 300 response is cacheable by default; i.e., unless otherwise A 300 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
Note: The original proposal for the 300 status code defined the Note: The original proposal for the 300 status code defined the
URI header field as providing a list of alternative URI header field as providing a list of alternative
representations, such that it would be usable for 200, 300, and representations, such that it would be usable for 200, 300, and
406 responses and be transferred in responses to the HEAD method. 406 responses and be transferred in responses to the HEAD method.
However, lack of deployment and disagreement over syntax led to However, lack of deployment and disagreement over syntax led to
both URI and Alternates (a subsequent proposal) being dropped from both URI and Alternates (a subsequent proposal) being dropped from
this specification. It is possible to communicate the list using this specification. It is possible to communicate the list as a
a set of Link header fields [RFC5988], each with a relationship of Link header field value [RFC8288] whose members have a
"alternate", though deployment is a chicken-and-egg problem. relationship of "alternate", though deployment is a chicken-and-
egg problem.
6.4.2. 301 Moved Permanently 9.4.2. 301 Moved Permanently
The 301 (Moved Permanently) status code indicates that the target The 301 (Moved Permanently) status code indicates that the target
resource has been assigned a new permanent URI and any future resource has been assigned a new permanent URI and any future
references to this resource ought to use one of the enclosed URIs. references to this resource ought to use one of the enclosed URIs.
Clients with link-editing capabilities ought to automatically re-link Clients with link-editing capabilities ought to automatically re-link
references to the effective request URI to one or more of the new references to the effective request URI to one or more of the new
references sent by the server, where possible. references sent by the server, where possible.
The server SHOULD generate a Location header field in the response The server SHOULD generate a Location header field in the response
containing a preferred URI reference for the new permanent URI. The containing a preferred URI reference for the new permanent URI. The
user agent MAY use the Location field value for automatic user agent MAY use the Location field value for automatic
redirection. The server's response payload usually contains a short redirection. The server's response payload usually contains a short
hypertext note with a hyperlink to the new URI(s). hypertext note with a hyperlink to the new URI(s).
Note: For historical reasons, a user agent MAY change the request Note: For historical reasons, a user agent MAY change the request
method from POST to GET for the subsequent request. If this method from POST to GET for the subsequent request. If this
behavior is undesired, the 307 (Temporary Redirect) status code behavior is undesired, the 308 (Permanent Redirect) status code
can be used instead. can be used instead.
A 301 response is cacheable by default; i.e., unless otherwise A 301 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.4.3. 302 Found 9.4.3. 302 Found
The 302 (Found) status code indicates that the target resource The 302 (Found) status code indicates that the target resource
resides temporarily under a different URI. Since the redirection resides temporarily under a different URI. Since the redirection
might be altered on occasion, the client ought to continue to use the might be altered on occasion, the client ought to continue to use the
effective request URI for future requests. effective request URI for future requests.
The server SHOULD generate a Location header field in the response The server SHOULD generate a Location header field in the response
containing a URI reference for the different URI. The user agent MAY containing a URI reference for the different URI. The user agent MAY
use the Location field value for automatic redirection. The server's use the Location field value for automatic redirection. The server's
response payload usually contains a short hypertext note with a response payload usually contains a short hypertext note with a
hyperlink to the different URI(s). hyperlink to the different URI(s).
Note: For historical reasons, a user agent MAY change the request Note: For historical reasons, a user agent MAY change the request
method from POST to GET for the subsequent request. If this method from POST to GET for the subsequent request. If this
behavior is undesired, the 307 (Temporary Redirect) status code behavior is undesired, the 307 (Temporary Redirect) status code
can be used instead. can be used instead.
6.4.4. 303 See Other 9.4.4. 303 See Other
The 303 (See Other) status code indicates that the server is The 303 (See Other) status code indicates that the server is
redirecting the user agent to a different resource, as indicated by a redirecting the user agent to a different resource, as indicated by a
URI in the Location header field, which is intended to provide an URI in the Location header field, which is intended to provide an
indirect response to the original request. A user agent can perform indirect response to the original request. A user agent can perform
a retrieval request targeting that URI (a GET or HEAD request if a retrieval request targeting that URI (a GET or HEAD request if
using HTTP), which might also be redirected, and present the eventual using HTTP), which might also be redirected, and present the eventual
result as an answer to the original request. Note that the new URI result as an answer to the original request. Note that the new URI
in the Location header field is not considered equivalent to the in the Location header field is not considered equivalent to the
effective request URI. effective request URI.
skipping to change at line 5618 skipping to change at page 131, line 39
might result in a representation that is useful to recipients without might result in a representation that is useful to recipients without
implying that it represents the original target resource. Note that implying that it represents the original target resource. Note that
answers to the questions of what can be represented, what answers to the questions of what can be represented, what
representations are adequate, and what might be a useful description representations are adequate, and what might be a useful description
are outside the scope of HTTP. are outside the scope of HTTP.
Except for responses to a HEAD request, the representation of a 303 Except for responses to a HEAD request, the representation of a 303
response ought to contain a short hypertext note with a hyperlink to response ought to contain a short hypertext note with a hyperlink to
the same URI reference provided in the Location header field. the same URI reference provided in the Location header field.
4.1. 304 Not Modified 9.4.5. 304 Not Modified
The 304 (Not Modified) status code indicates that a conditional GET The 304 (Not Modified) status code indicates that a conditional GET
or HEAD request has been received and would have resulted in a 200 or HEAD request has been received and would have resulted in a 200
(OK) response if it were not for the fact that the condition (OK) response if it were not for the fact that the condition
evaluated to false. In other words, there is no need for the server evaluated to false. In other words, there is no need for the server
to transfer a representation of the target resource because the to transfer a representation of the target resource because the
request indicates that the client, which made the request request indicates that the client, which made the request
conditional, already has a valid representation; the server is conditional, already has a valid representation; the server is
therefore redirecting the client to make use of that stored therefore redirecting the client to make use of that stored
representation as if it were the payload of a 200 (OK) response. representation as if it were the payload of a 200 (OK) response.
skipping to change at line 5643 skipping to change at page 132, line 15
ETag, Expires, and Vary. ETag, Expires, and Vary.
Since the goal of a 304 response is to minimize information transfer Since the goal of a 304 response is to minimize information transfer
when the recipient already has one or more cached representations, a when the recipient already has one or more cached representations, a
sender SHOULD NOT generate representation metadata other than the sender SHOULD NOT generate representation metadata other than the
above listed fields unless said metadata exists for the purpose of above listed fields unless said metadata exists for the purpose of
guiding cache updates (e.g., Last-Modified might be useful if the guiding cache updates (e.g., Last-Modified might be useful if the
response does not have an ETag field). response does not have an ETag field).
Requirements on a cache that receives a 304 response are defined in Requirements on a cache that receives a 304 response are defined in
Section 4.3.4 of [RFC7234]. If the conditional request originated Section 4.3.4 of [Caching]. If the conditional request originated
with an outbound client, such as a user agent with its own cache with an outbound client, such as a user agent with its own cache
sending a conditional GET to a shared proxy, then the proxy SHOULD sending a conditional GET to a shared proxy, then the proxy SHOULD
forward the 304 response to that client. forward the 304 response to that client.
A 304 response cannot contain a message-body; it is always terminated A 304 response cannot contain a message-body; it is always terminated
by the first empty line after the header fields. by the first empty line after the header fields.
6.4.5. 305 Use Proxy 9.4.6. 305 Use Proxy
The 305 (Use Proxy) status code was defined in a previous version of The 305 (Use Proxy) status code was defined in a previous version of
this specification and is now deprecated (Appendix B). this specification and is now deprecated (Appendix B of [RFC7231]).
6.4.6. 306 (Unused) 9.4.7. 306 (Unused)
The 306 status code was defined in a previous version of this The 306 status code was defined in a previous version of this
specification, is no longer used, and the code is reserved. specification, is no longer used, and the code is reserved.
6.4.7. 307 Temporary Redirect 9.4.8. 307 Temporary Redirect
The 307 (Temporary Redirect) status code indicates that the target The 307 (Temporary Redirect) status code indicates that the target
resource resides temporarily under a different URI and the user agent resource resides temporarily under a different URI and the user agent
MUST NOT change the request method if it performs an automatic MUST NOT change the request method if it performs an automatic
redirection to that URI. Since the redirection can change over time, redirection to that URI. Since the redirection can change over time,
the client ought to continue using the original effective request URI the client ought to continue using the original effective request URI
for future requests. for future requests.
The server SHOULD generate a Location header field in the response The server SHOULD generate a Location header field in the response
containing a URI reference for the different URI. The user agent MAY containing a URI reference for the different URI. The user agent MAY
use the Location field value for automatic redirection. The server's use the Location field value for automatic redirection. The server's
response payload usually contains a short hypertext note with a response payload usually contains a short hypertext note with a
hyperlink to the different URI(s). hyperlink to the different URI(s).
Note: This status code is similar to 302 (Found), except that it
does not allow changing the request method from POST to GET. This
specification defines no equivalent counterpart for 301 (Moved
Permanently) ([RFC7238], however, defines the status code 308
(Permanent Redirect) for this purpose).
9.4.9. 308 Permanent Redirect 9.4.9. 308 Permanent Redirect
The 308 (Permanent Redirect) status code indicates that the target The 308 (Permanent Redirect) status code indicates that the target
resource has been assigned a new permanent URI and any future resource has been assigned a new permanent URI and any future
references to this resource ought to use one of the enclosed URIs. references to this resource ought to use one of the enclosed URIs.
Clients with link editing capabilities ought to automatically re-link Clients with link editing capabilities ought to automatically re-link
references to the effective request URI (Section 5.5 of [RFC7230]) to references to the effective request URI to one or more of the new
one or more of the new references sent by the server, where possible. references sent by the server, where possible.
The server SHOULD generate a Location header field ([RFC7231], The server SHOULD generate a Location header field in the response
Section 7.1.2) in the response containing a preferred URI reference containing a preferred URI reference for the new permanent URI. The
for the new permanent URI. The user agent MAY use the Location field user agent MAY use the Location field value for automatic
value for automatic redirection. The server's response payload redirection. The server's response payload usually contains a short
usually contains a short hypertext note with a hyperlink to the new hypertext note with a hyperlink to the new URI(s).
URI(s).
A 308 response is cacheable by default; i.e., unless otherwise A 308 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
[RFC7234], Section 4.2.2). Section 4.2.2 of [Caching]).
Note: This status code is similar to 301 (Moved Permanently) Note: This status code is much younger (June 2014) than its
([RFC7231], Section 6.4.2), except that it does not allow changing sibling codes, and thus might not be recognized everywhere. See
the request method from POST to GET. Section 4 of [RFC7538] for deployment considerations.
9.5. Client Error 4xx 9.5. Client Error 4xx
The 4xx (Client Error) class of status code indicates that the client The 4xx (Client Error) class of status code indicates that the client
seems to have erred. Except when responding to a HEAD request, the seems to have erred. Except when responding to a HEAD request, the
server SHOULD send a representation containing an explanation of the server SHOULD send a representation containing an explanation of the
error situation, and whether it is a temporary or permanent error situation, and whether it is a temporary or permanent
condition. These status codes are applicable to any request method. condition. These status codes are applicable to any request method.
User agents SHOULD display any included representation to the user. User agents SHOULD display any included representation to the user.
6.5.1. 400 Bad Request 9.5.1. 400 Bad Request
The 400 (Bad Request) status code indicates that the server cannot or The 400 (Bad Request) status code indicates that the server cannot or
will not process the request due to something that is perceived to be will not process the request due to something that is perceived to be
a client error (e.g., malformed request syntax, invalid request a client error (e.g., malformed request syntax, invalid request
message framing, or deceptive request routing). message framing, or deceptive request routing).
3.1. 401 Unauthorized 9.5.2. 401 Unauthorized
The 401 (Unauthorized) status code indicates that the request has not The 401 (Unauthorized) status code indicates that the request has not
been applied because it lacks valid authentication credentials for been applied because it lacks valid authentication credentials for
the target resource. The server generating a 401 response MUST send the target resource. The server generating a 401 response MUST send
a WWW-Authenticate header field (Section 4.1) containing at least one a WWW-Authenticate header field (Section 10.3.1) containing at least
challenge applicable to the target resource. one challenge applicable to the target resource.
If the request included authentication credentials, then the 401 If the request included authentication credentials, then the 401
response indicates that authorization has been refused for those response indicates that authorization has been refused for those
credentials. The user agent MAY repeat the request with a new or credentials. The user agent MAY repeat the request with a new or
replaced Authorization header field (Section 4.2). If the 401 replaced Authorization header field (Section 8.5.3). If the 401
response contains the same challenge as the prior response, and the response contains the same challenge as the prior response, and the
user agent has already attempted authentication at least once, then user agent has already attempted authentication at least once, then
the user agent SHOULD present the enclosed representation to the the user agent SHOULD present the enclosed representation to the
user, since it usually contains relevant diagnostic information. user, since it usually contains relevant diagnostic information.
6.5.2. 402 Payment Required 9.5.3. 402 Payment Required
The 402 (Payment Required) status code is reserved for future use. The 402 (Payment Required) status code is reserved for future use.
6.5.3. 403 Forbidden 9.5.4. 403 Forbidden
The 403 (Forbidden) status code indicates that the server understood The 403 (Forbidden) status code indicates that the server understood
the request but refuses to authorize it. A server that wishes to the request but refuses to fulfill it. A server that wishes to make
make public why the request has been forbidden can describe that public why the request has been forbidden can describe that reason in
reason in the response payload (if any). the response payload (if any).
If authentication credentials were provided in the request, the If authentication credentials were provided in the request, the
server considers them insufficient to grant access. The client server considers them insufficient to grant access. The client
SHOULD NOT automatically repeat the request with the same SHOULD NOT automatically repeat the request with the same
credentials. The client MAY repeat the request with new or different credentials. The client MAY repeat the request with new or different
credentials. However, a request might be forbidden for reasons credentials. However, a request might be forbidden for reasons
unrelated to the credentials. unrelated to the credentials.
An origin server that wishes to "hide" the current existence of a An origin server that wishes to "hide" the current existence of a
forbidden target resource MAY instead respond with a status code of forbidden target resource MAY instead respond with a status code of
404 (Not Found). 404 (Not Found).
6.5.4. 404 Not Found 9.5.5. 404 Not Found
The 404 (Not Found) status code indicates that the origin server did The 404 (Not Found) status code indicates that the origin server did
not find a current representation for the target resource or is not not find a current representation for the target resource or is not
willing to disclose that one exists. A 404 status code does not willing to disclose that one exists. A 404 status code does not
indicate whether this lack of representation is temporary or indicate whether this lack of representation is temporary or
permanent; the 410 (Gone) status code is preferred over 404 if the permanent; the 410 (Gone) status code is preferred over 404 if the
origin server knows, presumably through some configurable means, that origin server knows, presumably through some configurable means, that
the condition is likely to be permanent. the condition is likely to be permanent.
A 404 response is cacheable by default; i.e., unless otherwise A 404 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.5.5. 405 Method Not Allowed 9.5.6. 405 Method Not Allowed
The 405 (Method Not Allowed) status code indicates that the method The 405 (Method Not Allowed) status code indicates that the method
received in the request-line is known by the origin server but not received in the request-line is known by the origin server but not
supported by the target resource. The origin server MUST generate an supported by the target resource. The origin server MUST generate an
Allow header field in a 405 response containing a list of the target Allow header field in a 405 response containing a list of the target
resource's currently supported methods. resource's currently supported methods.
A 405 response is cacheable by default; i.e., unless otherwise A 405 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.5.6. 406 Not Acceptable 9.5.7. 406 Not Acceptable
The 406 (Not Acceptable) status code indicates that the target The 406 (Not Acceptable) status code indicates that the target
resource does not have a current representation that would be resource does not have a current representation that would be
acceptable to the user agent, according to the proactive negotiation acceptable to the user agent, according to the proactive negotiation
header fields received in the request (Section 5.3), and the server header fields received in the request (Section 8.4), and the server
is unwilling to supply a default representation. is unwilling to supply a default representation.
The server SHOULD generate a payload containing a list of available The server SHOULD generate a payload containing a list of available
representation characteristics and corresponding resource identifiers representation characteristics and corresponding resource identifiers
from which the user or user agent can choose the one most from which the user or user agent can choose the one most
appropriate. A user agent MAY automatically select the most appropriate. A user agent MAY automatically select the most
appropriate choice from that list. However, this specification does appropriate choice from that list. However, this specification does
not define any standard for such automatic selection, as described in not define any standard for such automatic selection, as described in
Section 6.4.1. Section 9.4.1.
3.2. 407 Proxy Authentication Required 9.5.8. 407 Proxy Authentication Required
The 407 (Proxy Authentication Required) status code is similar to 401 The 407 (Proxy Authentication Required) status code is similar to 401
(Unauthorized), but it indicates that the client needs to (Unauthorized), but it indicates that the client needs to
authenticate itself in order to use a proxy. The proxy MUST send a authenticate itself in order to use a proxy. The proxy MUST send a
Proxy-Authenticate header field (Section 4.3) containing a challenge Proxy-Authenticate header field (Section 10.3.2) containing a
applicable to that proxy for the target resource. The client MAY challenge applicable to that proxy for the target resource. The
repeat the request with a new or replaced Proxy-Authorization header client MAY repeat the request with a new or replaced Proxy-
field (Section 4.4). Authorization header field (Section 8.5.4).
6.5.7. 408 Request Timeout 9.5.9. 408 Request Timeout
The 408 (Request Timeout) status code indicates that the server did The 408 (Request Timeout) status code indicates that the server did
not receive a complete request message within the time that it was not receive a complete request message within the time that it was
prepared to wait. A server SHOULD send the "close" connection option prepared to wait. A server SHOULD send the "close" connection option
(Section 6.1 of [RFC7230]) in the response, since 408 implies that (Section 9.1 of [Messaging]) in the response, since 408 implies that
the server has decided to close the connection rather than continue the server has decided to close the connection rather than continue
waiting. If the client has an outstanding request in transit, the waiting. If the client has an outstanding request in transit, the
client MAY repeat that request on a new connection. client MAY repeat that request on a new connection.
6.5.8. 409 Conflict 9.5.10. 409 Conflict
The 409 (Conflict) status code indicates that the request could not The 409 (Conflict) status code indicates that the request could not
be completed due to a conflict with the current state of the target be completed due to a conflict with the current state of the target
resource. This code is used in situations where the user might be resource. This code is used in situations where the user might be
able to resolve the conflict and resubmit the request. The server able to resolve the conflict and resubmit the request. The server
SHOULD generate a payload that includes enough information for a user SHOULD generate a payload that includes enough information for a user
to recognize the source of the conflict. to recognize the source of the conflict.
Conflicts are most likely to occur in response to a PUT request. For Conflicts are most likely to occur in response to a PUT request. For
example, if versioning were being used and the representation being example, if versioning were being used and the representation being
PUT included changes to a resource that conflict with those made by PUT included changes to a resource that conflict with those made by
an earlier (third-party) request, the origin server might use a 409 an earlier (third-party) request, the origin server might use a 409
response to indicate that it can't complete the request. In this response to indicate that it can't complete the request. In this
case, the response representation would likely contain information case, the response representation would likely contain information
useful for merging the differences based on the revision history. useful for merging the differences based on the revision history.
6.5.9. 410 Gone 9.5.11. 410 Gone
The 410 (Gone) status code indicates that access to the target The 410 (Gone) status code indicates that access to the target
resource is no longer available at the origin server and that this resource is no longer available at the origin server and that this
condition is likely to be permanent. If the origin server does not condition is likely to be permanent. If the origin server does not
know, or has no facility to determine, whether or not the condition know, or has no facility to determine, whether or not the condition
is permanent, the status code 404 (Not Found) ought to be used is permanent, the status code 404 (Not Found) ought to be used
instead. instead.
The 410 response is primarily intended to assist the task of web The 410 response is primarily intended to assist the task of web
maintenance by notifying the recipient that the resource is maintenance by notifying the recipient that the resource is
intentionally unavailable and that the server owners desire that intentionally unavailable and that the server owners desire that
remote links to that resource be removed. Such an event is common remote links to that resource be removed. Such an event is common
for limited-time, promotional services and for resources belonging to for limited-time, promotional services and for resources belonging to
individuals no longer associated with the origin server's site. It individuals no longer associated with the origin server's site. It
is not necessary to mark all permanently unavailable resources as is not necessary to mark all permanently unavailable resources as
"gone" or to keep the mark for any length of time -- that is left to "gone" or to keep the mark for any length of time -- that is left to
the discretion of the server owner. the discretion of the server owner.
A 410 response is cacheable by default; i.e., unless otherwise A 410 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.5.10. 411 Length Required 9.5.12. 411 Length Required
The 411 (Length Required) status code indicates that the server The 411 (Length Required) status code indicates that the server
refuses to accept the request without a defined Content-Length refuses to accept the request without a defined Content-Length
(Section 3.3.2 of [RFC7230]). The client MAY repeat the request if (Section 6.2.4). The client MAY repeat the request if it adds a
it adds a valid Content-Length header field containing the length of valid Content-Length header field containing the length of the
the message body in the request message. message body in the request message.
4.2. 412 Precondition Failed 9.5.13. 412 Precondition Failed
The 412 (Precondition Failed) status code indicates that one or more The 412 (Precondition Failed) status code indicates that one or more
conditions given in the request header fields evaluated to false when conditions given in the request header fields evaluated to false when
tested on the server. This response code allows the client to place tested on the server. This response status code allows the client to
preconditions on the current resource state (its current place preconditions on the current resource state (its current
representations and metadata) and, thus, prevent the request method representations and metadata) and, thus, prevent the request method
from being applied if the target resource is in an unexpected state. from being applied if the target resource is in an unexpected state.
6.5.11. 413 Payload Too Large 9.5.14. 413 Payload Too Large
The 413 (Payload Too Large) status code indicates that the server is The 413 (Payload Too Large) status code indicates that the server is
refusing to process a request because the request payload is larger refusing to process a request because the request payload is larger
than the server is willing or able to process. The server MAY close than the server is willing or able to process. The server MAY close
the connection to prevent the client from continuing the request. the connection to prevent the client from continuing the request.
If the condition is temporary, the server SHOULD generate a If the condition is temporary, the server SHOULD generate a Retry-
Retry-After header field to indicate that it is temporary and after After header field to indicate that it is temporary and after what
what time the client MAY try again. time the client MAY try again.
6.5.12. 414 URI Too Long 9.5.15. 414 URI Too Long
The 414 (URI Too Long) status code indicates that the server is The 414 (URI Too Long) status code indicates that the server is
refusing to service the request because the request-target (Section refusing to service the request because the request-target
5.3 of [RFC7230]) is longer than the server is willing to interpret. (Section 3.2 of [Messaging]) is longer than the server is willing to
This rare condition is only likely to occur when a client has interpret. This rare condition is only likely to occur when a client
improperly converted a POST request to a GET request with long query has improperly converted a POST request to a GET request with long
information, when the client has descended into a "black hole" of query information, when the client has descended into a "black hole"
redirection (e.g., a redirected URI prefix that points to a suffix of of redirection (e.g., a redirected URI prefix that points to a suffix
itself) or when the server is under attack by a client attempting to of itself) or when the server is under attack by a client attempting
exploit potential security holes. to exploit potential security holes.
A 414 response is cacheable by default; i.e., unless otherwise A 414 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.5.13. 415 Unsupported Media Type 9.5.16. 415 Unsupported Media Type
The 415 (Unsupported Media Type) status code indicates that the The 415 (Unsupported Media Type) status code indicates that the
origin server is refusing to service the request because the payload origin server is refusing to service the request because the payload
is in a format not supported by this method on the target resource. is in a format not supported by this method on the target resource.
The format problem might be due to the request's indicated The format problem might be due to the request's indicated Content-
Content-Type or Content-Encoding, or as a result of inspecting the Type or Content-Encoding, or as a result of inspecting the data
data directly. directly.
4.4. 416 Range Not Satisfiable 9.5.17. 416 Range Not Satisfiable
The 416 (Range Not Satisfiable) status code indicates that none of The 416 (Range Not Satisfiable) status code indicates that none of
the ranges in the request's Range header field (Section 3.1) overlap the ranges in the request's Range header field (Section 8.3) overlap
the current extent of the selected resource or that the set of ranges the current extent of the selected representation or that the set of
requested has been rejected due to invalid ranges or an excessive ranges requested has been rejected due to invalid ranges or an
request of small or overlapping ranges. excessive request of small or overlapping ranges.
For byte ranges, failing to overlap the current extent means that the For byte ranges, failing to overlap the current extent means that the
first-byte-pos of all of the byte-range-spec values were greater than first-pos of all of the range-spec values were greater than or equal
the current length of the selected representation. When this status to the current length of the selected representation. When this
code is generated in response to a byte-range request, the sender status code is generated in response to a byte-range request, the
SHOULD generate a Content-Range header field specifying the current sender SHOULD generate a Content-Range header field specifying the
length of the selected representation (Section 4.2). current length of the selected representation (Section 6.3.4).
For example: For example:
HTTP/1.1 416 Range Not Satisfiable HTTP/1.1 416 Range Not Satisfiable
Date: Fri, 20 Jan 2012 15:41:54 GMT Date: Fri, 20 Jan 2012 15:41:54 GMT
Content-Range: bytes */47022 Content-Range: bytes */47022
Note: Because servers are free to ignore Range, many Note: Because servers are free to ignore Range, many
implementations will simply respond with the entire selected implementations will simply respond with the entire selected
representation in a 200 (OK) response. That is partly because representation in a 200 (OK) response. That is partly because
most clients are prepared to receive a 200 (OK) to complete the most clients are prepared to receive a 200 (OK) to complete the
task (albeit less efficiently) and partly because clients might task (albeit less efficiently) and partly because clients might
not stop making an invalid partial request until they have not stop making an invalid partial request until they have
received a complete representation. Thus, clients cannot depend received a complete representation. Thus, clients cannot depend
on receiving a 416 (Range Not Satisfiable) response even when it on receiving a 416 (Range Not Satisfiable) response even when it
is most appropriate. is most appropriate.
6.5.14. 417 Expectation Failed 9.5.18. 417 Expectation Failed
The 417 (Expectation Failed) status code indicates that the The 417 (Expectation Failed) status code indicates that the
expectation given in the request's Expect header field expectation given in the request's Expect header field
(Section 5.1.1) could not be met by at least one of the inbound (Section 8.1.1) could not be met by at least one of the inbound
servers. servers.
9.5.19. 418 (Unused)
[RFC2324] was an April 1 RFC that lampooned the various ways HTTP was
abused; one such abuse was the definition of an application-specific
418 status code. In the intervening years, this status code has been
widely implemented as an "Easter Egg", and therefore is effectively
consumed by this use.
Therefore, the 418 status code is reserved in the IANA HTTP Status
Code Registry. This indicates that the status code cannot be
assigned to other applications currently. If future circumstances
require its use (e.g., exhaustion of 4NN status codes), it can be re-
assigned to another use.
9.5.20. 422 Unprocessable Payload
The 422 (Unprocessable Payload) status code indicates that the server
understands the content type of the request payload (hence a 415
(Unsupported Media Type) status code is inappropriate), and the
syntax of the request payload is correct, but was unable to process
the contained instructions. For example, this status code can be
sent if an XML request payload contains well-formed (i.e.,
syntactically correct), but semantically erroneous XML instructions.
9.5.21. 426 Upgrade Required 9.5.21. 426 Upgrade Required
The 426 (Upgrade Required) status code indicates that the server The 426 (Upgrade Required) status code indicates that the server
refuses to perform the request using the current protocol but might refuses to perform the request using the current protocol but might
be willing to do so after the client upgrades to a different be willing to do so after the client upgrades to a different
protocol. The server MUST send an Upgrade header field in a 426 protocol. The server MUST send an Upgrade header field in a 426
response to indicate the required protocol(s) (Section 6.7 of response to indicate the required protocol(s) (Section 9.9 of
[RFC7230]). [Messaging]).
Example: Example:
HTTP/1.1 426 Upgrade Required HTTP/1.1 426 Upgrade Required
Upgrade: HTTP/3.0 Upgrade: HTTP/3.0
Connection: Upgrade Connection: Upgrade
Content-Length: 53 Content-Length: 53
Content-Type: text/plain Content-Type: text/plain
This service requires use of the HTTP/3.0 protocol. This service requires use of the HTTP/3.0 protocol.
6.6. Server Error 5xx 9.6. Server Error 5xx
The 5xx (Server Error) class of status code indicates that the server The 5xx (Server Error) class of status code indicates that the server
is aware that it has erred or is incapable of performing the is aware that it has erred or is incapable of performing the
requested method. Except when responding to a HEAD request, the requested method. Except when responding to a HEAD request, the
server SHOULD send a representation containing an explanation of the server SHOULD send a representation containing an explanation of the
error situation, and whether it is a temporary or permanent error situation, and whether it is a temporary or permanent
condition. A user agent SHOULD display any included representation condition. A user agent SHOULD display any included representation
to the user. These response codes are applicable to any request to the user. These response codes are applicable to any request
method. method.
6.6.1. 500 Internal Server Error 9.6.1. 500 Internal Server Error
The 500 (Internal Server Error) status code indicates that the server The 500 (Internal Server Error) status code indicates that the server
encountered an unexpected condition that prevented it from fulfilling encountered an unexpected condition that prevented it from fulfilling
the request. the request.
6.6.2. 501 Not Implemented 9.6.2. 501 Not Implemented
The 501 (Not Implemented) status code indicates that the server does The 501 (Not Implemented) status code indicates that the server does
not support the functionality required to fulfill the request. This not support the functionality required to fulfill the request. This
is the appropriate response when the server does not recognize the is the appropriate response when the server does not recognize the
request method and is not capable of supporting it for any resource. request method and is not capable of supporting it for any resource.
A 501 response is cacheable by default; i.e., unless otherwise A 501 response is heuristically cacheable; i.e., unless otherwise
indicated by the method definition or explicit cache controls (see indicated by the method definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]). Section 4.2.2 of [Caching]).
6.6.3. 502 Bad Gateway 9.6.3. 502 Bad Gateway
The 502 (Bad Gateway) status code indicates that the server, while The 502 (Bad Gateway) status code indicates that the server, while
acting as a gateway or proxy, received an invalid response from an acting as a gateway or proxy, received an invalid response from an
inbound server it accessed while attempting to fulfill the request. inbound server it accessed while attempting to fulfill the request.
6.6.4. 503 Service Unavailable 9.6.4. 503 Service Unavailable
The 503 (Service Unavailable) status code indicates that the server The 503 (Service Unavailable) status code indicates that the server
is currently unable to handle the request due to a temporary overload is currently unable to handle the request due to a temporary overload
or scheduled maintenance, which will likely be alleviated after some or scheduled maintenance, which will likely be alleviated after some
delay. The server MAY send a Retry-After header field delay. The server MAY send a Retry-After header field
(Section 7.1.3) to suggest an appropriate amount of time for the (Section 10.1.3) to suggest an appropriate amount of time for the
client to wait before retrying the request. client to wait before retrying the request.
Note: The existence of the 503 status code does not imply that a Note: The existence of the 503 status code does not imply that a
server has to use it when becoming overloaded. Some servers might server has to use it when becoming overloaded. Some servers might
simply refuse the connection. simply refuse the connection.
6.6.5. 504 Gateway Timeout 9.6.5. 504 Gateway Timeout
The 504 (Gateway Timeout) status code indicates that the server, The 504 (Gateway Timeout) status code indicates that the server,
while acting as a gateway or proxy, did not receive a timely response while acting as a gateway or proxy, did not receive a timely response
from an upstream server it needed to access in order to complete the from an upstream server it needed to access in order to complete the
request. request.
6.6.6. 505 HTTP Version Not Supported 9.6.6. 505 HTTP Version Not Supported
The 505 (HTTP Version Not Supported) status code indicates that the The 505 (HTTP Version Not Supported) status code indicates that the
server does not support, or refuses to support, the major version of server does not support, or refuses to support, the major version of
HTTP that was used in the request message. The server is indicating HTTP that was used in the request message. The server is indicating
that it is unable or unwilling to complete the request using the same that it is unable or unwilling to complete the request using the same
major version as the client, as described in Section 2.6 of major version as the client, as described in Section 3.5, other than
[RFC7230], other than with this error message. The server SHOULD with this error message. The server SHOULD generate a representation
generate a representation for the 505 response that describes why for the 505 response that describes why that version is not supported
that version is not supported and what other protocols are supported and what other protocols are supported by that server.
by that server.
9.7. Status Code Extensibility 9.7. Status Code Extensibility
9.7.1. Status Code Registry Additional status codes, outside the scope of this specification,
have been specified for use in HTTP. All such status codes ought to
The "Hypertext Transfer Protocol (HTTP) Status Code Registry" defines be registered within the "Hypertext Transfer Protocol (HTTP) Status
the namespace for the response status-code token (Section 6). The Code Registry".
status code registry is maintained at
<http://www.iana.org/assignments/http-status-codes>.
This section replaces the registration procedure for HTTP Status 9.7.1. Status Code Registry
Codes previously defined in Section 7.1 of [RFC2817].
8.2.1. Procedure The "Hypertext Transfer Protocol (HTTP) Status Code Registry",
maintained by IANA at <https://www.iana.org/assignments/http-status-
codes>, registers status code numbers.
A registration MUST include the following fields: A registration MUST include the following fields:
o Status Code (3 digits) o Status Code (3 digits)
o Short Description o Short Description
o Pointer to specification text o Pointer to specification text
Values to be added to the HTTP status code namespace require IETF Values to be added to the HTTP status code namespace require IETF
Review (see [RFC5226], Section 4.1). Review (see [RFC8126], Section 4.8).
8.2.2. Considerations for New Status Codes 9.7.2. Considerations for New Status Codes
When it is necessary to express semantics for a response that are not When it is necessary to express semantics for a response that are not
defined by current status codes, a new status code can be registered. defined by current status codes, a new status code can be registered.
Status codes are generic; they are potentially applicable to any Status codes are generic; they are potentially applicable to any
resource, not just one particular media type, kind of resource, or resource, not just one particular media type, kind of resource, or
application of HTTP. As such, it is preferred that new status codes application of HTTP. As such, it is preferred that new status codes
be registered in a document that isn't specific to a single be registered in a document that isn't specific to a single
application. application.
New status codes are required to fall under one of the categories New status codes are required to fall under one of the categories
defined in Section 6. To allow existing parsers to process the defined in Section 9. To allow existing parsers to process the
response message, new status codes cannot disallow a payload, response message, new status codes cannot disallow a payload,
although they can mandate a zero-length payload body. although they can mandate a zero-length payload body.
Proposals for new status codes that are not yet widely deployed ought Proposals for new status codes that are not yet widely deployed ought
to avoid allocating a specific number for the code until there is to avoid allocating a specific number for the code until there is
clear consensus that it will be registered; instead, early drafts can clear consensus that it will be registered; instead, early drafts can
use a notation such as "4NN", or "3N0" .. "3N9", to indicate the use a notation such as "4NN", or "3N0" .. "3N9", to indicate the
class of the proposed status code(s) without consuming a number class of the proposed status code(s) without consuming a number
prematurely. prematurely.
The definition of a new status code ought to explain the request The definition of a new status code ought to explain the request
conditions that would cause a response containing that status code conditions that would cause a response containing that status code
(e.g., combinations of request header fields and/or method(s)) along (e.g., combinations of request header fields and/or method(s)) along
with any dependencies on response header fields (e.g., what fields with any dependencies on response header fields (e.g., what fields
are required, what fields can modify the semantics, and what header are required, what fields can modify the semantics, and what field
field semantics are further refined when used with the new status semantics are further refined when used with the new status code).
code).
The definition of a new status code ought to specify whether or not The definition of a new status code ought to specify whether or not
it is cacheable. Note that all status codes can be cached if the it is cacheable. Note that all status codes can be cached if the
response they occur in has explicit freshness information; however, response they occur in has explicit freshness information; however,
status codes that are defined as being cacheable are allowed to be status codes that are defined as being cacheable are allowed to be
cached without explicit freshness information. Likewise, the cached without explicit freshness information. Likewise, the
definition of a status code can place constraints upon cache definition of a status code can place constraints upon cache
behavior. See [RFC7234] for more information. behavior. See [Caching] for more information.
Finally, the definition of a new status code ought to indicate Finally, the definition of a new status code ought to indicate
whether the payload has any implied association with an identified whether the payload has any implied association with an identified
resource (Section 3.1.4.1). resource (Section 6.3.2).
7. Response Header Fields 10. Response Header Fields
The response header fields allow the server to pass additional The response header fields allow the server to pass additional
information about the response beyond what is placed in the information about the response beyond what is placed in the status-
status-line. These header fields give information about the server, line. These header fields give information about the server, about
about further access to the target resource, or about related further access to the target resource, or about related resources.
resources.
Although each response header field has a defined meaning, in Although each response header field has a defined meaning, in
general, the precise semantics might be further refined by the general, the precise semantics might be further refined by the
semantics of the request method and/or response status code. semantics of the request method and/or response status code.
7.1. Control Data 10.1. Control Data
Response header fields can supply control data that supplements the Response header fields can supply control data that supplements the
status code, directs caching, or instructs the client where to go status code, directs caching, or instructs the client where to go
next. next.
+-------------------+--------------------------+ +---------------+--------------------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+-------------------+--------------------------+ +---------------+--------------------------+
| Age | Section 5.1 of [RFC7234] | | Age | Section 5.1 of [Caching] |
| Cache-Control | Section 5.2 of [RFC7234] | | Cache-Control | Section 5.2 of [Caching] |
| Expires | Section 5.3 of [RFC7234] | | Expires | Section 5.3 of [Caching] |
| Date | Section 7.1.1.2 | | Date | Section 10.1.1.2 |
| Location | Section 7.1.2 | | Location | Section 10.1.2 |
| Retry-After | Section 7.1.3 | | Retry-After | Section 10.1.3 |
| Vary | Section 7.1.4 | | Vary | Section 10.1.4 |
| Warning | Section 5.5 of [RFC7234] | | Warning | Section 5.5 of [Caching] |
+-------------------+--------------------------+ +---------------+--------------------------+
7.1.1. Origination Date 10.1.1. Origination Date
7.1.1.1. Date/Time Formats 10.1.1.1. Date/Time Formats
Prior to 1995, there were three different formats commonly used by Prior to 1995, there were three different formats commonly used by
servers to communicate timestamps. For compatibility with old servers to communicate timestamps. For compatibility with old
implementations, all three are defined here. The preferred format is implementations, all three are defined here. The preferred format is
a fixed-length and single-zone subset of the date and time a fixed-length and single-zone subset of the date and time
specification used by the Internet Message Format [RFC5322]. specification used by the Internet Message Format [RFC5322].
HTTP-date = IMF-fixdate / obs-date HTTP-date = IMF-fixdate / obs-date
An example of the preferred format is An example of the preferred format is
Sun, 06 Nov 1994 08:49:37 GMT ; IMF-fixdate Sun, 06 Nov 1994 08:49:37 GMT ; IMF-fixdate
Examples of the two obsolete formats are Examples of the two obsolete formats are
Sunday, 06-Nov-94 08:49:37 GMT ; obsolete RFC 850 format Sunday, 06-Nov-94 08:49:37 GMT ; obsolete RFC 850 format
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format
A recipient that parses a timestamp value in an HTTP header field A recipient that parses a timestamp value in an HTTP field MUST
MUST accept all three HTTP-date formats. When a sender generates a accept all three HTTP-date formats. When a sender generates a field
header field that contains one or more timestamps defined as that contains one or more timestamps defined as HTTP-date, the sender
HTTP-date, the sender MUST generate those timestamps in the MUST generate those timestamps in the IMF-fixdate format.
IMF-fixdate format.
An HTTP-date value represents time as an instance of Coordinated An HTTP-date value represents time as an instance of Coordinated
Universal Time (UTC). The first two formats indicate UTC by the Universal Time (UTC). The first two formats indicate UTC by the
three-letter abbreviation for Greenwich Mean Time, "GMT", a three-letter abbreviation for Greenwich Mean Time, "GMT", a
predecessor of the UTC name; values in the asctime format are assumed predecessor of the UTC name; values in the asctime format are assumed
to be in UTC. A sender that generates HTTP-date values from a local to be in UTC. A sender that generates HTTP-date values from a local
clock ought to use NTP ([RFC5905]) or some similar protocol to clock ought to use NTP ([RFC5905]) or some similar protocol to
synchronize its clock to UTC. synchronize its clock to UTC.
Preferred format: Preferred format:
IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT
; fixed length/zone/capitalization subset of the format ; fixed length/zone/capitalization subset of the format
; see Section 3.3 of [RFC5322] ; see Section 3.3 of [RFC5322]
day-name = %x4D.6F.6E ; "Mon", case-sensitive day-name = %s"Mon" / %s"Tue" / %s"Wed"
/ %x54.75.65 ; "Tue", case-sensitive / %s"Thu" / %s"Fri" / %s"Sat" / %s"Sun"
/ %x57.65.64 ; "Wed", case-sensitive
/ %x54.68.75 ; "Thu", case-sensitive
/ %x46.72.69 ; "Fri", case-sensitive
/ %x53.61.74 ; "Sat", case-sensitive
/ %x53.75.6E ; "Sun", case-sensitive
date1 = day SP month SP year date1 = day SP month SP year
; e.g., 02 Jun 1982 ; e.g., 02 Jun 1982
day = 2DIGIT day = 2DIGIT
month = %x4A.61.6E ; "Jan", case-sensitive month = %s"Jan" / %s"Feb" / %s"Mar" / %s"Apr"
/ %x46.65.62 ; "Feb", case-sensitive / %s"May" / %s"Jun" / %s"Jul" / %s"Aug"
/ %x4D.61.72 ; "Mar", case-sensitive / %s"Sep" / %s"Oct" / %s"Nov" / %s"Dec"
/ %x41.70.72 ; "Apr", case-sensitive
/ %x4D.61.79 ; "May", case-sensitive
/ %x4A.75.6E ; "Jun", case-sensitive
/ %x4A.75.6C ; "Jul", case-sensitive
/ %x41.75.67 ; "Aug", case-sensitive
/ %x53.65.70 ; "Sep", case-sensitive
/ %x4F.63.74 ; "Oct", case-sensitive
/ %x4E.6F.76 ; "Nov", case-sensitive
/ %x44.65.63 ; "Dec", case-sensitive
year = 4DIGIT year = 4DIGIT
GMT = %x47.4D.54 ; "GMT", case-sensitive GMT = %s"GMT"
time-of-day = hour ":" minute ":" second time-of-day = hour ":" minute ":" second
; 00:00:00 - 23:59:60 (leap second) ; 00:00:00 - 23:59:60 (leap second)
hour = 2DIGIT hour = 2DIGIT
minute = 2DIGIT minute = 2DIGIT
second = 2DIGIT second = 2DIGIT
Obsolete formats: Obsolete formats:
obs-date = rfc850-date / asctime-date obs-date = rfc850-date / asctime-date
rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT
date2 = day "-" month "-" 2DIGIT date2 = day "-" month "-" 2DIGIT
; e.g., 02-Jun-82 ; e.g., 02-Jun-82
day-name-l = %x4D.6F.6E.64.61.79 ; "Monday", case-sensitive day-name-l = %s"Monday" / %s"Tuesday" / %s"Wednesday"
/ %x54.75.65.73.64.61.79 ; "Tuesday", case-sensitive / %s"Thursday" / %s"Friday" / %s"Saturday" / %s"Sunday"
/ %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive
/ %x54.68.75.72.73.64.61.79 ; "Thursday", case-sensitive
/ %x46.72.69.64.61.79 ; "Friday", case-sensitive
/ %x53.61.74.75.72.64.61.79 ; "Saturday", case-sensitive
/ %x53.75.6E.64.61.79 ; "Sunday", case-sensitive
asctime-date = day-name SP date3 SP time-of-day SP year asctime-date = day-name SP date3 SP time-of-day SP year
date3 = month SP ( 2DIGIT / ( SP 1DIGIT )) date3 = month SP ( 2DIGIT / ( SP 1DIGIT ))
; e.g., Jun 2 ; e.g., Jun 2
HTTP-date is case sensitive. A sender MUST NOT generate additional HTTP-date is case sensitive. A sender MUST NOT generate additional
whitespace in an HTTP-date beyond that specifically included as SP in whitespace in an HTTP-date beyond that specifically included as SP in
the grammar. The semantics of day-name, day, month, year, and the grammar. The semantics of day-name, day, month, year, and time-
time-of-day are the same as those defined for the Internet Message of-day are the same as those defined for the Internet Message Format
Format constructs with the corresponding name ([RFC5322], Section constructs with the corresponding name ([RFC5322], Section 3.3).
3.3).
Recipients of a timestamp value in rfc850-date format, which uses a Recipients of a timestamp value in rfc850-date format, which uses a
two-digit year, MUST interpret a timestamp that appears to be more two-digit year, MUST interpret a timestamp that appears to be more
than 50 years in the future as representing the most recent year in than 50 years in the future as representing the most recent year in
the past that had the same last two digits. the past that had the same last two digits.
Recipients of timestamp values are encouraged to be robust in parsing Recipients of timestamp values are encouraged to be robust in parsing
timestamps unless otherwise restricted by the field definition. For timestamps unless otherwise restricted by the field definition. For
example, messages are occasionally forwarded over HTTP from a example, messages are occasionally forwarded over HTTP from a non-
non-HTTP source that might generate any of the date and time HTTP source that might generate any of the date and time
specifications defined by the Internet Message Format. specifications defined by the Internet Message Format.
Note: HTTP requirements for the date/time stamp format apply only Note: HTTP requirements for the date/time stamp format apply only
to their usage within the protocol stream. Implementations are to their usage within the protocol stream. Implementations are
not required to use these formats for user presentation, request not required to use these formats for user presentation, request
logging, etc. logging, etc.
7.1.1.2. Date 10.1.1.2. Date
The "Date" header field represents the date and time at which the The "Date" header field represents the date and time at which the
message was originated, having the same semantics as the Origination message was originated, having the same semantics as the Origination
Date Field (orig-date) defined in Section 3.6.1 of [RFC5322]. The Date Field (orig-date) defined in Section 3.6.1 of [RFC5322]. The
field value is an HTTP-date, as defined in Section 7.1.1.1. field value is an HTTP-date, as defined in Section 10.1.1.1.
Date = HTTP-date Date = HTTP-date
An example is An example is
Date: Tue, 15 Nov 1994 08:12:31 GMT Date: Tue, 15 Nov 1994 08:12:31 GMT
When a Date header field is generated, the sender SHOULD generate its When a Date header field is generated, the sender SHOULD generate its
field value as the best available approximation of the date and time field value as the best available approximation of the date and time
of message generation. In theory, the date ought to represent the of message generation. In theory, the date ought to represent the
skipping to change at line 6294 skipping to change at page 146, line 8
corresponding Date header field to the message's header section if it corresponding Date header field to the message's header section if it
is cached or forwarded downstream. is cached or forwarded downstream.
A user agent MAY send a Date header field in a request, though A user agent MAY send a Date header field in a request, though
generally will not do so unless it is believed to convey useful generally will not do so unless it is believed to convey useful
information to the server. For example, custom applications of HTTP information to the server. For example, custom applications of HTTP
might convey a Date if the server is expected to adjust its might convey a Date if the server is expected to adjust its
interpretation of the user's request based on differences between the interpretation of the user's request based on differences between the
user agent and server clocks. user agent and server clocks.
7.1.2. Location 10.1.2. Location
The "Location" header field is used in some responses to refer to a The "Location" header field is used in some responses to refer to a
specific resource in relation to the response. The type of specific resource in relation to the response. The type of
relationship is defined by the combination of request method and relationship is defined by the combination of request method and
status code semantics. status code semantics.
Location = URI-reference Location = URI-reference
The field value consists of a single URI-reference. When it has the The field value consists of a single URI-reference. When it has the
form of a relative reference ([RFC3986], Section 4.2), the final form of a relative reference ([RFC3986], Section 4.2), the final
skipping to change at line 6348 skipping to change at page 147, line 15
There are circumstances in which a fragment identifier in a Location There are circumstances in which a fragment identifier in a Location
value would not be appropriate. For example, the Location header value would not be appropriate. For example, the Location header
field in a 201 (Created) response is supposed to provide a URI that field in a 201 (Created) response is supposed to provide a URI that
is specific to the created resource. is specific to the created resource.
Note: Some recipients attempt to recover from Location fields that Note: Some recipients attempt to recover from Location fields that
are not valid URI references. This specification does not mandate are not valid URI references. This specification does not mandate
or define such processing, but does allow it for the sake of or define such processing, but does allow it for the sake of
robustness. robustness.
Note: The Content-Location header field (Section 3.1.4.2) differs Note: The Content-Location header field (Section 6.2.5) differs
from Location in that the Content-Location refers to the most from Location in that the Content-Location refers to the most
specific resource corresponding to the enclosed representation. specific resource corresponding to the enclosed representation.
It is therefore possible for a response to contain both the It is therefore possible for a response to contain both the
Location and Content-Location header fields. Location and Content-Location header fields.
7.1.3. Retry-After 10.1.3. Retry-After
Servers send the "Retry-After" header field to indicate how long the Servers send the "Retry-After" header field to indicate how long the
user agent ought to wait before making a follow-up request. When user agent ought to wait before making a follow-up request. When
sent with a 503 (Service Unavailable) response, Retry-After indicates sent with a 503 (Service Unavailable) response, Retry-After indicates
how long the service is expected to be unavailable to the client. how long the service is expected to be unavailable to the client.
When sent with any 3xx (Redirection) response, Retry-After indicates When sent with any 3xx (Redirection) response, Retry-After indicates
the minimum time that the user agent is asked to wait before issuing the minimum time that the user agent is asked to wait before issuing
the redirected request. the redirected request.
The value of this field can be either an HTTP-date or a number of The value of this field can be either an HTTP-date or a number of
skipping to change at line 6381 skipping to change at page 147, line 48
delay-seconds = 1*DIGIT delay-seconds = 1*DIGIT
Two examples of its use are Two examples of its use are
Retry-After: Fri, 31 Dec 1999 23:59:59 GMT Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
Retry-After: 120 Retry-After: 120
In the latter example, the delay is 2 minutes. In the latter example, the delay is 2 minutes.
7.1.4. Vary 10.1.4. Vary
The "Vary" header field in a response describes what parts of a The "Vary" header field in a response describes what parts of a
request message, aside from the method, Host header field, and request message, aside from the method, Host header field, and
request target, might influence the origin server's process for request target, might influence the origin server's process for
selecting and representing this response. The value consists of selecting and representing this response. The value consists of
either a single asterisk ("*") or a list of header field names either a single asterisk ("*") or a list of header field names (case-
(case-insensitive). insensitive).
Vary = "*" / 1#field-name Vary = "*" / 1#field-name
A Vary field value of "*" signals that anything about the request A Vary field value of "*" signals that anything about the request
might play a role in selecting the response representation, possibly might play a role in selecting the response representation, possibly
including elements outside the message syntax (e.g., the client's including elements outside the message syntax (e.g., the client's
network address). A recipient will not be able to determine whether network address). A recipient will not be able to determine whether
this response is appropriate for a later request without forwarding this response is appropriate for a later request without forwarding
the request to the origin server. A proxy MUST NOT generate a Vary the request to the origin server. A proxy MUST NOT generate a Vary
field with a "*" value. field with a "*" value.
A Vary field value consisting of a comma-separated list of names A Vary field value consisting of a list of field names indicates that
indicates that the named request header fields, known as the the named request header fields, known as the selecting header
selecting header fields, might have a role in selecting the fields, might have a role in selecting the representation. The
representation. The potential selecting header fields are not potential selecting header fields are not limited to those defined by
limited to those defined by this specification. this specification.
For example, a response that contains For example, a response that contains
Vary: accept-encoding, accept-language Vary: accept-encoding, accept-language
indicates that the origin server might have used the request's indicates that the origin server might have used the request's
Accept-Encoding and Accept-Language fields (or lack thereof) as Accept-Encoding and Accept-Language fields (or lack thereof) as
determining factors while choosing the content for this response. determining factors while choosing the content for this response.
An origin server might send Vary with a list of fields for two An origin server might send Vary with a list of fields for two
purposes: purposes:
1. To inform cache recipients that they MUST NOT use this response 1. To inform cache recipients that they MUST NOT use this response
to satisfy a later request unless the later request has the same to satisfy a later request unless the later request has the same
values for the listed fields as the original request (Section 4.1 values for the listed fields as the original request (Section 4.1
of [RFC7234]). In other words, Vary expands the cache key of [Caching]). In other words, Vary expands the cache key
required to match a new request to the stored cache entry. required to match a new request to the stored cache entry.
2. To inform user agent recipients that this response is subject to 2. To inform user agent recipients that this response is subject to
content negotiation (Section 5.3) and that a different content negotiation (Section 8.4) and that a different
representation might be sent in a subsequent request if representation might be sent in a subsequent request if
additional parameters are provided in the listed header fields additional parameters are provided in the listed header fields
(proactive negotiation). (proactive negotiation).
An origin server SHOULD send a Vary header field when its algorithm An origin server SHOULD send a Vary header field when its algorithm
for selecting a representation varies based on aspects of the request for selecting a representation varies based on aspects of the request
message other than the method and request target, unless the variance message other than the method and request target, unless the variance
cannot be crossed or the origin server has been deliberately cannot be crossed or the origin server has been deliberately
configured to prevent cache transparency. For example, there is no configured to prevent cache transparency. For example, there is no
need to send the Authorization field name in Vary because reuse need to send the Authorization field name in Vary because reuse
across users is constrained by the field definition (Section 4.2 of across users is constrained by the field definition (Section 8.5.3).
[RFC7235]). Likewise, an origin server might use Cache-Control Likewise, an origin server might use Cache-Control response
directives (Section 5.2 of [RFC7234]) to supplant Vary if it directives (Section 5.2 of [Caching]) to supplant Vary if it
considers the variance less significant than the performance cost of considers the variance less significant than the performance cost of
Vary's impact on caching. Vary's impact on caching.
7.2. Validator Header Fields 10.2. Validators
Validator header fields convey metadata about the selected Validator header fields convey metadata about the selected
representation (Section 3). In responses to safe requests, validator representation (Section 6). In responses to safe requests, validator
fields describe the selected representation chosen by the origin fields describe the selected representation chosen by the origin
server while handling the response. Note that, depending on the server while handling the response. Note that, depending on the
status code semantics, the selected representation for a given status code semantics, the selected representation for a given
response is not necessarily the same as the representation enclosed response is not necessarily the same as the representation enclosed
as response payload. as response payload.
In a successful response to a state-changing request, validator In a successful response to a state-changing request, validator
fields describe the new representation that has replaced the prior fields describe the new representation that has replaced the prior
selected representation as a result of processing the request. selected representation as a result of processing the request.
For example, an ETag header field in a 201 (Created) response For example, an ETag field in a 201 (Created) response communicates
communicates the entity-tag of the newly created resource's the entity-tag of the newly created resource's representation, so
representation, so that it can be used in later conditional requests that it can be used in later conditional requests to prevent the
to prevent the "lost update" problem [RFC7232]. "lost update" problem Section 8.2.
+-------------------+--------------------------+ +---------------+----------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+-------------------+--------------------------+ +---------------+----------------+
| ETag | Section 2.3 of [RFC7232] | | ETag | Section 10.2.3 |
| Last-Modified | Section 2.2 of [RFC7232] | | Last-Modified | Section 10.2.2 |
+-------------------+--------------------------+ +---------------+----------------+
This specification defines two forms of metadata that are commonly This specification defines two forms of metadata that are commonly
used to observe resource state and test for preconditions: used to observe resource state and test for preconditions:
modification dates (Section 2.2) and opaque entity tags modification dates (Section 10.2.2) and opaque entity tags
(Section 2.3). Additional metadata that reflects resource state has (Section 10.2.3). Additional metadata that reflects resource state
been defined by various extensions of HTTP, such as Web Distributed has been defined by various extensions of HTTP, such as Web
Authoring and Versioning (WebDAV, [RFC4918]), that are beyond the Distributed Authoring and Versioning (WebDAV, [RFC4918]), that are
scope of this specification. A resource metadata value is referred beyond the scope of this specification. A resource metadata value is
to as a "validator" when it is used within a precondition. referred to as a "validator" when it is used within a precondition.
2.1. Weak versus Strong 10.2.1. Weak versus Strong
Validators come in two flavors: strong or weak. Weak validators are Validators come in two flavors: strong or weak. Weak validators are
easy to generate but are far less useful for comparisons. Strong easy to generate but are far less useful for comparisons. Strong
validators are ideal for comparisons but can be very difficult (and validators are ideal for comparisons but can be very difficult (and
occasionally impossible) to generate efficiently. Rather than impose occasionally impossible) to generate efficiently. Rather than impose
that all forms of resource adhere to the same strength of validator, that all forms of resource adhere to the same strength of validator,
HTTP exposes the type of validator in use and imposes restrictions on HTTP exposes the type of validator in use and imposes restrictions on
when weak validators can be used as preconditions. when weak validators can be used as preconditions.
A "strong validator" is representation metadata that changes value A "strong validator" is representation metadata that changes value
skipping to change at line 6561 skipping to change at page 151, line 41
they differ only in the representation metadata, such as when two they differ only in the representation metadata, such as when two
different media types are available for the same representation data. different media types are available for the same representation data.
Strong validators are usable for all conditional requests, including Strong validators are usable for all conditional requests, including
cache validation, partial content ranges, and "lost update" cache validation, partial content ranges, and "lost update"
avoidance. Weak validators are only usable when the client does not avoidance. Weak validators are only usable when the client does not
require exact equality with previously obtained representation data, require exact equality with previously obtained representation data,
such as when validating a cache entry or limiting a web traversal to such as when validating a cache entry or limiting a web traversal to
recent changes. recent changes.
2.2. Last-Modified 10.2.2. Last-Modified
The "Last-Modified" header field in a response provides a timestamp The "Last-Modified" header field in a response provides a timestamp
indicating the date and time at which the origin server believes the indicating the date and time at which the origin server believes the
selected representation was last modified, as determined at the selected representation was last modified, as determined at the
conclusion of handling the request. conclusion of handling the request.
Last-Modified = HTTP-date Last-Modified = HTTP-date
An example of its use is An example of its use is
Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT
2.2.1. Generation 10.2.2.1. Generation
An origin server SHOULD send Last-Modified for any selected An origin server SHOULD send Last-Modified for any selected
representation for which a last modification date can be reasonably representation for which a last modification date can be reasonably
and consistently determined, since its use in conditional requests and consistently determined, since its use in conditional requests
and evaluating cache freshness ([RFC7234]) results in a substantial and evaluating cache freshness ([Caching]) results in a substantial
reduction of HTTP traffic on the Internet and can be a significant reduction of HTTP traffic on the Internet and can be a significant
factor in improving service scalability and reliability. factor in improving service scalability and reliability.
A representation is typically the sum of many parts behind the A representation is typically the sum of many parts behind the
resource interface. The last-modified time would usually be the most resource interface. The last-modified time would usually be the most
recent time that any of those parts were changed. How that value is recent time that any of those parts were changed. How that value is
determined for any given resource is an implementation detail beyond determined for any given resource is an implementation detail beyond
the scope of this specification. What matters to HTTP is how the scope of this specification. What matters to HTTP is how
recipients of the Last-Modified header field can use its value to recipients of the Last-Modified header field can use its value to
make conditional requests and test the validity of locally cached make conditional requests and test the validity of locally cached
skipping to change at line 6611 skipping to change at page 152, line 43
the last modification time is derived from implementation-specific the last modification time is derived from implementation-specific
metadata that evaluates to some time in the future, according to the metadata that evaluates to some time in the future, according to the
origin server's clock, then the origin server MUST replace that value origin server's clock, then the origin server MUST replace that value
with the message origination date. This prevents a future with the message origination date. This prevents a future
modification date from having an adverse impact on cache validation. modification date from having an adverse impact on cache validation.
An origin server without a clock MUST NOT assign Last-Modified values An origin server without a clock MUST NOT assign Last-Modified values
to a response unless these values were associated with the resource to a response unless these values were associated with the resource
by some other system or user with a reliable clock. by some other system or user with a reliable clock.
2.2.2. Comparison 10.2.2.2. Comparison
A Last-Modified time, when used as a validator in a request, is A Last-Modified time, when used as a validator in a request, is
implicitly weak unless it is possible to deduce that it is strong, implicitly weak unless it is possible to deduce that it is strong,
using the following rules: using the following rules:
o The validator is being compared by an origin server to the actual o The validator is being compared by an origin server to the actual
current validator for the representation and, current validator for the representation and,
o That origin server reliably knows that the associated o That origin server reliably knows that the associated
representation did not change twice during the second covered by representation did not change twice during the second covered by
the presented validator. the presented validator.
or or
o The validator is about to be used by a client in an o The validator is about to be used by a client in an If-Modified-
If-Modified-Since, If-Unmodified-Since, or If-Range header field, Since, If-Unmodified-Since, or If-Range header field, because the
because the client has a cache entry for the associated client has a cache entry for the associated representation, and
representation, and
o That cache entry includes a Date value, which gives the time when o That cache entry includes a Date value, which gives the time when
the origin server sent the original response, and the origin server sent the original response, and
o The presented Last-Modified time is at least 60 seconds before the o The presented Last-Modified time is at least 60 seconds before the
Date value. Date value.
or or
o The validator is being compared by an intermediate cache to the o The validator is being compared by an intermediate cache to the
skipping to change at line 6658 skipping to change at page 153, line 42
This method relies on the fact that if two different responses were This method relies on the fact that if two different responses were
sent by the origin server during the same second, but both had the sent by the origin server during the same second, but both had the
same Last-Modified time, then at least one of those responses would same Last-Modified time, then at least one of those responses would
have a Date value equal to its Last-Modified time. The arbitrary have a Date value equal to its Last-Modified time. The arbitrary
60-second limit guards against the possibility that the Date and 60-second limit guards against the possibility that the Date and
Last-Modified values are generated from different clocks or at Last-Modified values are generated from different clocks or at
somewhat different times during the preparation of the response. An somewhat different times during the preparation of the response. An
implementation MAY use a value larger than 60 seconds, if it is implementation MAY use a value larger than 60 seconds, if it is
believed that 60 seconds is too short. believed that 60 seconds is too short.
2.3. ETag 10.2.3. ETag
The "ETag" header field in a response provides the current entity-tag The "ETag" field in a response provides the current entity-tag for
for the selected representation, as determined at the conclusion of the selected representation, as determined at the conclusion of
handling the request. An entity-tag is an opaque validator for handling the request. An entity-tag is an opaque validator for
differentiating between multiple representations of the same differentiating between multiple representations of the same
resource, regardless of whether those multiple representations are resource, regardless of whether those multiple representations are
due to resource state changes over time, content negotiation due to resource state changes over time, content negotiation
resulting in multiple representations being valid at the same time, resulting in multiple representations being valid at the same time,
or both. An entity-tag consists of an opaque quoted string, possibly or both. An entity-tag consists of an opaque quoted string, possibly
prefixed by a weakness indicator. prefixed by a weakness indicator.
ETag = entity-tag ETag = entity-tag
entity-tag = [ weak ] opaque-tag entity-tag = [ weak ] opaque-tag
weak = %x57.2F ; "W/", case-sensitive weak = %s"W/"
opaque-tag = DQUOTE *etagc DQUOTE opaque-tag = DQUOTE *etagc DQUOTE
etagc = %x21 / %x23-7E / obs-text etagc = %x21 / %x23-7E / obs-text
; VCHAR except double quotes, plus obs-text ; VCHAR except double quotes, plus obs-text
Note: Previously, opaque-tag was defined to be a quoted-string Note: Previously, opaque-tag was defined to be a quoted-string
([RFC2616], Section 3.11); thus, some recipients might perform ([RFC2616], Section 3.11); thus, some recipients might perform
backslash unescaping. Servers therefore ought to avoid backslash backslash unescaping. Servers therefore ought to avoid backslash
characters in entity tags. characters in entity tags.
An entity-tag can be more reliable for validation than a modification An entity-tag can be more reliable for validation than a modification
skipping to change at line 6698 skipping to change at page 154, line 33
Examples: Examples:
ETag: "xyzzy" ETag: "xyzzy"
ETag: W/"xyzzy" ETag: W/"xyzzy"
ETag: "" ETag: ""
An entity-tag can be either a weak or strong validator, with strong An entity-tag can be either a weak or strong validator, with strong
being the default. If an origin server provides an entity-tag for a being the default. If an origin server provides an entity-tag for a
representation and the generation of that entity-tag does not satisfy representation and the generation of that entity-tag does not satisfy
all of the characteristics of a strong validator (Section 2.1), then all of the characteristics of a strong validator (Section 10.2.1),
the origin server MUST mark the entity-tag as weak by prefixing its then the origin server MUST mark the entity-tag as weak by prefixing
opaque value with "W/" (case-sensitive). its opaque value with "W/" (case-sensitive).
2.3.1. Generation A sender MAY send the Etag field in a trailer section (see
Section 4.6). However, since trailers are often ignored, it is
preferable to send Etag as a header field unless the entity-tag is
generated while sending the message body.
10.2.3.1. Generation
The principle behind entity-tags is that only the service author The principle behind entity-tags is that only the service author
knows the implementation of a resource well enough to select the most knows the implementation of a resource well enough to select the most
accurate and efficient validation mechanism for that resource, and accurate and efficient validation mechanism for that resource, and
that any such mechanism can be mapped to a simple sequence of octets that any such mechanism can be mapped to a simple sequence of octets
for easy comparison. Since the value is opaque, there is no need for for easy comparison. Since the value is opaque, there is no need for
the client to be aware of how each entity-tag is constructed. the client to be aware of how each entity-tag is constructed.
For example, a resource that has implementation-specific versioning For example, a resource that has implementation-specific versioning
applied to all changes might use an internal revision number, perhaps applied to all changes might use an internal revision number, perhaps
combined with a variance identifier for content negotiation, to combined with a variance identifier for content negotiation, to
accurately differentiate between representations. Other accurately differentiate between representations. Other
implementations might use a collision-resistant hash of implementations might use a collision-resistant hash of
representation content, a combination of various file attributes, or representation content, a combination of various file attributes, or
a modification timestamp that has sub-second resolution. a modification timestamp that has sub-second resolution.
An origin server SHOULD send an ETag for any selected representation An origin server SHOULD send an ETag for any selected representation
for which detection of changes can be reasonably and consistently for which detection of changes can be reasonably and consistently
determined, since the entity-tag's use in conditional requests and determined, since the entity-tag's use in conditional requests and
evaluating cache freshness ([RFC7234]) can result in a substantial evaluating cache freshness ([Caching]) can result in a substantial
reduction of HTTP network traffic and can be a significant factor in reduction of HTTP network traffic and can be a significant factor in
improving service scalability and reliability. improving service scalability and reliability.
2.3.2. Comparison 10.2.3.2. Comparison
There are two entity-tag comparison functions, depending on whether There are two entity-tag comparison functions, depending on whether
or not the comparison context allows the use of weak validators: or not the comparison context allows the use of weak validators:
o Strong comparison: two entity-tags are equivalent if both are not o Strong comparison: two entity-tags are equivalent if both are not
weak and their opaque-tags match character-by-character. weak and their opaque-tags match character-by-character.
o Weak comparison: two entity-tags are equivalent if their o Weak comparison: two entity-tags are equivalent if their opaque-
opaque-tags match character-by-character, regardless of either or tags match character-by-character, regardless of either or both
both being tagged as "weak". being tagged as "weak".
The example below shows the results for a set of entity-tag pairs and The example below shows the results for a set of entity-tag pairs and
both the weak and strong comparison function results: both the weak and strong comparison function results:
+--------+--------+-------------------+-----------------+ +--------+--------+-------------------+-----------------+
| ETag 1 | ETag 2 | Strong Comparison | Weak Comparison | | ETag 1 | ETag 2 | Strong Comparison | Weak Comparison |
+--------+--------+-------------------+-----------------+ +--------+--------+-------------------+-----------------+
| W/"1" | W/"1" | no match | match | | W/"1" | W/"1" | no match | match |
| W/"1" | W/"2" | no match | no match | | W/"1" | W/"2" | no match | no match |
| W/"1" | "1" | no match | match | | W/"1" | "1" | no match | match |
| "1" | "1" | match | match | | "1" | "1" | match | match |
+--------+--------+-------------------+-----------------+ +--------+--------+-------------------+-----------------+
2.3.3. Example: Entity-Tags Varying on Content-Negotiated Resources 10.2.3.3. Example: Entity-Tags Varying on Content-Negotiated Resources
Consider a resource that is subject to content negotiation (Section Consider a resource that is subject to content negotiation
3.4 of [RFC7231]), and where the representations sent in response to (Section 6.4), and where the representations sent in response to a
a GET request vary based on the Accept-Encoding request header field GET request vary based on the Accept-Encoding request header field
(Section 5.3.4 of [RFC7231]): (Section 8.4.4):
>> Request: >> Request:
GET /index HTTP/1.1 GET /index HTTP/1.1
Host: www.example.com Host: www.example.com
Accept-Encoding: gzip Accept-Encoding: gzip
In this case, the response might or might not use the gzip content In this case, the response might or might not use the gzip content
coding. If it does not, the response might look like: coding. If it does not, the response might look like:
skipping to change at line 6800 skipping to change at page 156, line 46
Vary: Accept-Encoding Vary: Accept-Encoding
Content-Type: text/plain Content-Type: text/plain
Content-Encoding: gzip Content-Encoding: gzip
...binary data... ...binary data...
Note: Content codings are a property of the representation data, Note: Content codings are a property of the representation data,
so a strong entity-tag for a content-encoded representation has to so a strong entity-tag for a content-encoded representation has to
be distinct from the entity tag of an unencoded representation to be distinct from the entity tag of an unencoded representation to
prevent potential conflicts during cache updates and range prevent potential conflicts during cache updates and range
requests. In contrast, transfer codings (Section 4 of [RFC7230]) requests. In contrast, transfer codings (Section 7 of
apply only during message transfer and do not result in distinct [Messaging]) apply only during message transfer and do not result
entity-tags. in distinct entity-tags.
2.4. When to Use Entity-Tags and Last-Modified Dates 10.2.4. When to Use Entity-Tags and Last-Modified Dates
In 200 (OK) responses to GET or HEAD, an origin server: In 200 (OK) responses to GET or HEAD, an origin server:
o SHOULD send an entity-tag validator unless it is not feasible to o SHOULD send an entity-tag validator unless it is not feasible to
generate one. generate one.
o MAY send a weak entity-tag instead of a strong entity-tag, if o MAY send a weak entity-tag instead of a strong entity-tag, if
performance considerations support the use of weak entity-tags, or performance considerations support the use of weak entity-tags, or
if it is unfeasible to send a strong entity-tag. if it is unfeasible to send a strong entity-tag.
skipping to change at line 6828 skipping to change at page 157, line 29
send both a strong entity-tag and a Last-Modified value in successful send both a strong entity-tag and a Last-Modified value in successful
responses to a retrieval request. responses to a retrieval request.
A client: A client:
o MUST send that entity-tag in any cache validation request (using o MUST send that entity-tag in any cache validation request (using
If-Match or If-None-Match) if an entity-tag has been provided by If-Match or If-None-Match) if an entity-tag has been provided by
the origin server. the origin server.
o SHOULD send the Last-Modified value in non-subrange cache o SHOULD send the Last-Modified value in non-subrange cache
validation requests (using If-Modified-Since) if only a validation requests (using If-Modified-Since) if only a Last-
Last-Modified value has been provided by the origin server. Modified value has been provided by the origin server.
o MAY send the Last-Modified value in subrange cache validation o MAY send the Last-Modified value in subrange cache validation
requests (using If-Unmodified-Since) if only a Last-Modified value requests (using If-Unmodified-Since) if only a Last-Modified value
has been provided by an HTTP/1.0 origin server. The user agent has been provided by an HTTP/1.0 origin server. The user agent
SHOULD provide a way to disable this, in case of difficulty. SHOULD provide a way to disable this, in case of difficulty.
o SHOULD send both validators in cache validation requests if both o SHOULD send both validators in cache validation requests if both
an entity-tag and a Last-Modified value have been provided by the an entity-tag and a Last-Modified value have been provided by the
origin server. This allows both HTTP/1.0 and HTTP/1.1 caches to origin server. This allows both HTTP/1.0 and HTTP/1.1 caches to
respond appropriately. respond appropriately.
7.3. Authentication Challenges 10.3. Authentication Challenges
Authentication challenges indicate what mechanisms are available for Authentication challenges indicate what mechanisms are available for
the client to provide authentication credentials in future requests. the client to provide authentication credentials in future requests.
+--------------------+--------------------------+ +--------------------+----------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+--------------------+--------------------------+ +--------------------+----------------+
| WWW-Authenticate | Section 4.1 of [RFC7235] | | WWW-Authenticate | Section 10.3.1 |
| Proxy-Authenticate | Section 4.3 of [RFC7235] | | Proxy-Authenticate | Section 10.3.2 |
+--------------------+--------------------------+ +--------------------+----------------+
Furthermore, the "Authentication-Info" and "Proxy-Authentication-
This specification defines the "Authentication-Info" and "Proxy- Info" response header fields are defined for use in authentication
Authentication-Info" response header fields for use in HTTP schemes that need to return information once the client's
authentication schemes ([RFC7235]) that need to return information authentication credentials have been accepted.
once the client's authentication credentials have been accepted.
This section defines the syntax and semantics of header fields +---------------------------+----------------+
related to the HTTP authentication framework. | Field Name | Defined in... |
+---------------------------+----------------+
| Authentication-Info | Section 10.3.3 |
| Proxy-Authentication-Info | Section 10.3.4 |
+---------------------------+----------------+
4.1. WWW-Authenticate 10.3.1. WWW-Authenticate
The "WWW-Authenticate" header field indicates the authentication The "WWW-Authenticate" header field indicates the authentication
scheme(s) and parameters applicable to the target resource. scheme(s) and parameters applicable to the target resource.
WWW-Authenticate = 1#challenge WWW-Authenticate = 1#challenge
A server generating a 401 (Unauthorized) response MUST send a A server generating a 401 (Unauthorized) response MUST send a WWW-
WWW-Authenticate header field containing at least one challenge. A Authenticate header field containing at least one challenge. A
server MAY generate a WWW-Authenticate header field in other response server MAY generate a WWW-Authenticate header field in other response
messages to indicate that supplying credentials (or different messages to indicate that supplying credentials (or different
credentials) might affect the response. credentials) might affect the response.
A proxy forwarding a response MUST NOT modify any WWW-Authenticate A proxy forwarding a response MUST NOT modify any WWW-Authenticate
fields in that response. fields in that response.
User agents are advised to take special care in parsing the field User agents are advised to take special care in parsing the field
value, as it might contain more than one challenge, and each value, as it might contain more than one challenge, and each
challenge can contain a comma-separated list of authentication challenge can contain a comma-separated list of authentication
skipping to change at line 6900 skipping to change at page 159, line 7
"type" and "title", and another one for the "Basic" scheme with a "type" and "title", and another one for the "Basic" scheme with a
realm value of "simple". realm value of "simple".
Note: The challenge grammar production uses the list syntax as Note: The challenge grammar production uses the list syntax as
well. Therefore, a sequence of comma, whitespace, and comma can well. Therefore, a sequence of comma, whitespace, and comma can
be considered either as applying to the preceding challenge, or to be considered either as applying to the preceding challenge, or to
be an empty entry in the list of challenges. In practice, this be an empty entry in the list of challenges. In practice, this
ambiguity does not affect the semantics of the header field value ambiguity does not affect the semantics of the header field value
and thus is harmless. and thus is harmless.
4.3. Proxy-Authenticate 10.3.2. Proxy-Authenticate
The "Proxy-Authenticate" header field consists of at least one The "Proxy-Authenticate" header field consists of at least one
challenge that indicates the authentication scheme(s) and parameters challenge that indicates the authentication scheme(s) and parameters
applicable to the proxy for this effective request URI (Section 5.5 applicable to the proxy for this effective request URI (Section 5.5).
of [RFC7230]). A proxy MUST send at least one Proxy-Authenticate A proxy MUST send at least one Proxy-Authenticate header field in
header field in each 407 (Proxy Authentication Required) response each 407 (Proxy Authentication Required) response that it generates.
that it generates.
Proxy-Authenticate = 1#challenge Proxy-Authenticate = 1#challenge
Unlike WWW-Authenticate, the Proxy-Authenticate header field applies Unlike WWW-Authenticate, the Proxy-Authenticate header field applies
only to the next outbound client on the response chain. This is only to the next outbound client on the response chain. This is
because only the client that chose a given proxy is likely to have because only the client that chose a given proxy is likely to have
the credentials necessary for authentication. However, when multiple the credentials necessary for authentication. However, when multiple
proxies are used within the same administrative domain, such as proxies are used within the same administrative domain, such as
office and regional caching proxies within a large corporate network, office and regional caching proxies within a large corporate network,
it is common for credentials to be generated by the user agent and it is common for credentials to be generated by the user agent and
passed through the hierarchy until consumed. Hence, in such a passed through the hierarchy until consumed. Hence, in such a
configuration, it will appear as if Proxy-Authenticate is being configuration, it will appear as if Proxy-Authenticate is being
forwarded because each proxy will send the same challenge set. forwarded because each proxy will send the same challenge set.
Note that the parsing considerations for WWW-Authenticate apply to Note that the parsing considerations for WWW-Authenticate apply to
this header field as well; see Section 4.1 for details. this header field as well; see Section 10.3.1 for details.
3. The Authentication-Info Response Header Field 10.3.3. Authentication-Info
HTTP authentication schemes can use the Authentication-Info response HTTP authentication schemes can use the Authentication-Info response
header field to communicate information after the client's header field to communicate information after the client's
authentication credentials have been accepted. This information can authentication credentials have been accepted. This information can
include a finalization message from the server (e.g., it can contain include a finalization message from the server (e.g., it can contain
the server authentication). the server authentication).
The field value is a list of parameters (name/value pairs), using the The field value is a list of parameters (name/value pairs), using the
"auth-param" syntax defined in Section 2.1 of [RFC7235]. This "auth-param" syntax defined in Section 8.5.1. This specification
specification only describes the generic format; authentication only describes the generic format; authentication schemes using
schemes using Authentication-Info will define the individual Authentication-Info will define the individual parameters. The
parameters. The "Digest" Authentication Scheme, for instance, "Digest" Authentication Scheme, for instance, defines multiple
defines multiple parameters in Section 3.5 of [RFC7616]. parameters in Section 3.5 of [RFC7616].
Authentication-Info = #auth-param Authentication-Info = #auth-param
The Authentication-Info header field can be used in any HTTP The Authentication-Info header field can be used in any HTTP
response, independently of request method and status code. Its response, independently of request method and status code. Its
semantics are defined by the authentication scheme indicated by the semantics are defined by the authentication scheme indicated by the
Authorization header field ([RFC7235], Section 4.2) of the Authorization header field (Section 8.5.3) of the corresponding
corresponding request. request.
A proxy forwarding a response is not allowed to modify the field A proxy forwarding a response is not allowed to modify the field
value in any way. value in any way.
Authentication-Info can be used inside trailers ([RFC7230], Authentication-Info can be used inside trailers (Section 7.1.2 of
Section 4.1.2) when the authentication scheme explicitly allows this. [Messaging]) when the authentication scheme explicitly allows this.
3.1. Parameter Value Format 10.3.3.1. Parameter Value Format
Parameter values can be expressed either as "token" or as "quoted- Parameter values can be expressed either as "token" or as "quoted-
string" (Section 3.2.6 of [RFC7230]). string" (Section 4.4.1).
Authentication scheme definitions need to allow both notations, both Authentication scheme definitions need to allow both notations, both
for senders and recipients. This allows recipients to use generic for senders and recipients. This allows recipients to use generic
parsing components, independent of the authentication scheme in use. parsing components, independent of the authentication scheme in use.
For backwards compatibility, authentication scheme definitions can For backwards compatibility, authentication scheme definitions can
restrict the format for senders to one of the two variants. This can restrict the format for senders to one of the two variants. This can
be important when it is known that deployed implementations will fail be important when it is known that deployed implementations will fail
when encountering one of the two formats. when encountering one of the two formats.
4. The Proxy-Authentication-Info Response Header Field 10.3.4. Proxy-Authentication-Info
The Proxy-Authentication-Info response header field is equivalent to The Proxy-Authentication-Info response header field is equivalent to
Authentication-Info, except that it applies to proxy authentication Authentication-Info, except that it applies to proxy authentication
([RFC7235], Section 2) and its semantics are defined by the (Section 8.5.1) and its semantics are defined by the authentication
authentication scheme indicated by the Proxy-Authorization header scheme indicated by the Proxy-Authorization header field
field ([RFC7235], Section 4.4) of the corresponding request: (Section 8.5.4) of the corresponding request:
Proxy-Authentication-Info = #auth-param Proxy-Authentication-Info = #auth-param
However, unlike Authentication-Info, the Proxy-Authentication-Info However, unlike Authentication-Info, the Proxy-Authentication-Info
header field applies only to the next outbound client on the response header field applies only to the next outbound client on the response
chain. This is because only the client that chose a given proxy is chain. This is because only the client that chose a given proxy is
likely to have the credentials necessary for authentication. likely to have the credentials necessary for authentication.
However, when multiple proxies are used within the same However, when multiple proxies are used within the same
administrative domain, such as office and regional caching proxies administrative domain, such as office and regional caching proxies
within a large corporate network, it is common for credentials to be within a large corporate network, it is common for credentials to be
generated by the user agent and passed through the hierarchy until generated by the user agent and passed through the hierarchy until
consumed. Hence, in such a configuration, it will appear as if consumed. Hence, in such a configuration, it will appear as if
Proxy-Authentication-Info is being forwarded because each proxy will Proxy-Authentication-Info is being forwarded because each proxy will
send the same field value. send the same field value.
10.4. Response Context 10.4. Response Context
The remaining response header fields provide more information about The remaining response header fields provide more information about
the target resource for potential use in later requests. the target resource for potential use in later requests.
+-------------------+--------------------------+ +---------------+----------------+
| Header Field Name | Defined in... | | Field Name | Defined in... |
+-------------------+--------------------------+ +---------------+----------------+
| Accept-Ranges | Section 2.3 of [RFC7233] | | Accept-Ranges | Section 10.4.1 |
| Allow | Section 7.4.1 | | Allow | Section 10.4.2 |
| Server | Section 7.4.2 | | Server | Section 10.4.3 |
+-------------------+--------------------------+ +---------------+----------------+
2.3. Accept-Ranges 10.4.1. Accept-Ranges
The "Accept-Ranges" header field allows a server to indicate that it The "Accept-Ranges" header field allows a server to indicate that it
supports range requests for the target resource. supports range requests for the target resource.
Accept-Ranges = acceptable-ranges Accept-Ranges = acceptable-ranges
acceptable-ranges = 1#range-unit / "none" acceptable-ranges = 1#range-unit / "none"
An origin server that supports byte-range requests for a given target An origin server that supports byte-range requests for a given target
resource MAY send resource MAY send
Accept-Ranges: bytes Accept-Ranges: bytes
to indicate what range units are supported. A client MAY generate to indicate what range units are supported. A client MAY generate
range requests without having received this header field for the range requests without having received this header field for the
resource involved. Range units are defined in Section 2. resource involved. Range units are defined in Section 6.1.4.
A server that does not support any kind of range request for the A server that does not support any kind of range request for the
target resource MAY send target resource MAY send
Accept-Ranges: none Accept-Ranges: none
to advise the client not to attempt a range request. to advise the client not to attempt a range request.
7.4.1. Allow 10.4.2. Allow
The "Allow" header field lists the set of methods advertised as The "Allow" header field lists the set of methods advertised as
supported by the target resource. The purpose of this field is supported by the target resource. The purpose of this field is
strictly to inform the recipient of valid request methods associated strictly to inform the recipient of valid request methods associated
with the resource. with the resource.
Allow = #method Allow = #method
Example of use: Example of use:
skipping to change at line 7051 skipping to change at page 162, line 18
the time of each request. An origin server MUST generate an Allow the time of each request. An origin server MUST generate an Allow
field in a 405 (Method Not Allowed) response and MAY do so in any field in a 405 (Method Not Allowed) response and MAY do so in any
other response. An empty Allow field value indicates that the other response. An empty Allow field value indicates that the
resource allows no methods, which might occur in a 405 response if resource allows no methods, which might occur in a 405 response if
the resource has been temporarily disabled by configuration. the resource has been temporarily disabled by configuration.
A proxy MUST NOT modify the Allow header field -- it does not need to A proxy MUST NOT modify the Allow header field -- it does not need to
understand all of the indicated methods in order to handle them understand all of the indicated methods in order to handle them
according to the generic message handling rules. according to the generic message handling rules.
7.4.2. Server 10.4.3. Server
The "Server" header field contains information about the software The "Server" header field contains information about the software
used by the origin server to handle the request, which is often used used by the origin server to handle the request, which is often used
by clients to help identify the scope of reported interoperability by clients to help identify the scope of reported interoperability
problems, to work around or tailor requests to avoid particular problems, to work around or tailor requests to avoid particular
server limitations, and for analytics regarding server or operating server limitations, and for analytics regarding server or operating
system use. An origin server MAY generate a Server field in its system use. An origin server MAY generate a Server field in its
responses. responses.
Server = product *( RWS ( product / comment ) ) Server = product *( RWS ( product / comment ) )
The Server field-value consists of one or more product identifiers, The Server field value consists of one or more product identifiers,
each followed by zero or more comments (Section 3.2 of [RFC7230]), each followed by zero or more comments (Section 4.4.1.3), which
which together identify the origin server software and its together identify the origin server software and its significant
significant subproducts. By convention, the product identifiers are subproducts. By convention, the product identifiers are listed in
listed in decreasing order of their significance for identifying the decreasing order of their significance for identifying the origin
origin server software. Each product identifier consists of a name server software. Each product identifier consists of a name and
and optional version, as defined in Section 5.5.3. optional version, as defined in Section 8.6.3.
Example: Example:
Server: CERN/3.0 libwww/2.17 Server: CERN/3.0 libwww/2.17
An origin server SHOULD NOT generate a Server field containing An origin server SHOULD NOT generate a Server field containing
needlessly fine-grained detail and SHOULD limit the addition of needlessly fine-grained detail and SHOULD limit the addition of
subproducts by third parties. Overly long and detailed Server field subproducts by third parties. Overly long and detailed Server field
values increase response latency and potentially reveal internal values increase response latency and potentially reveal internal
implementation details that might make it (slightly) easier for implementation details that might make it (slightly) easier for
attackers to find and exploit known security holes. attackers to find and exploit known security holes.
9. Security Considerations 11. Security Considerations
This section is meant to inform developers, information providers, This section is meant to inform developers, information providers,
and users of known security concerns relevant to HTTP semantics and and users of known security concerns relevant to HTTP semantics and
its use for transferring information over the Internet. its use for transferring information over the Internet.
Considerations related to message syntax, parsing, and routing are Considerations related to message syntax, parsing, and routing are
discussed in Section 9 of [RFC7230]. discussed in Section 11 of [Messaging].
The list of considerations below is not exhaustive. Most security The list of considerations below is not exhaustive. Most security
concerns related to HTTP semantics are about securing server-side concerns related to HTTP semantics are about securing server-side
applications (code behind the HTTP interface), securing user agent applications (code behind the HTTP interface), securing user agent
processing of payloads received via HTTP, or secure use of the processing of payloads received via HTTP, or secure use of the
Internet in general, rather than security of the protocol. Various Internet in general, rather than security of the protocol. Various
organizations maintain topical information and links to current organizations maintain topical information and links to current
research on Web application security (e.g., [OWASP]). research on Web application security (e.g., [OWASP]).
9.1. Establishing Authority 11.1. Establishing Authority
HTTP relies on the notion of an authoritative response: a response HTTP relies on the notion of an authoritative response: a response
that has been determined by (or at the direction of) the authority that has been determined by (or at the direction of) the origin
identified within the target URI to be the most appropriate response server identified within the target URI to be the most appropriate
for that request given the state of the target resource at the time response for that request given the state of the target resource at
of response message origination. the time of response message origination.
When a registered name is used in the authority component, the "http" When a registered name is used in the authority component, the "http"
URI scheme (Section 2.7.1) relies on the user's local name resolution URI scheme (Section 2.5.1) relies on the user's local name resolution
service to determine where it can find authoritative responses. This service to determine where it can find authoritative responses. This
means that any attack on a user's network host table, cached names, means that any attack on a user's network host table, cached names,
or name resolution libraries becomes an avenue for attack on or name resolution libraries becomes an avenue for attack on
establishing authority. Likewise, the user's choice of server for establishing authority for "http" URIs. Likewise, the user's choice
Domain Name Service (DNS), and the hierarchy of servers from which it of server for Domain Name Service (DNS), and the hierarchy of servers
obtains resolution results, could impact the authenticity of address from which it obtains resolution results, could impact the
mappings; DNS Security Extensions (DNSSEC, [RFC4033]) are one way to authenticity of address mappings; DNS Security Extensions (DNSSEC,
improve authenticity. [RFC4033]) are one way to improve authenticity.
Furthermore, after an IP address is obtained, establishing authority Furthermore, after an IP address is obtained, establishing authority
for an "http" URI is vulnerable to attacks on Internet Protocol for an "http" URI is vulnerable to attacks on Internet Protocol
routing. routing.
The "https" scheme (Section 2.7.2) is intended to prevent (or at The "https" scheme (Section 2.5.2) is intended to prevent (or at
least reveal) many of these potential attacks on establishing least reveal) many of these potential attacks on establishing
authority, provided that the negotiated TLS connection is secured and authority, provided that the negotiated TLS connection is secured and
the client properly verifies that the communicating server's identity the client properly verifies that the communicating server's identity
matches the target URI's authority component (see [RFC2818]). matches the target URI's authority component (Section 5.4.3.1).
Correctly implementing such verification can be difficult (see Correctly implementing such verification can be difficult (see
[Georgiev]). [Georgiev]).
Authority for a given origin server can be delegated through protocol
extensions; for example, [RFC7838]. Likewise, the set of servers
that a connection is considered authoritative for can be changed with
a protocol extension like [RFC8336].
Providing a response from a non-authoritative source, such as a Providing a response from a non-authoritative source, such as a
shared cache, is often useful to improve performance and shared proxy cache, is often useful to improve performance and
availability, but only to the extent that the source can be trusted availability, but only to the extent that the source can be trusted
or the distrusted response can be safely used. or the distrusted response can be safely used.
Unfortunately, establishing authority can be difficult. For example, Unfortunately, communicating authority to users can be difficult.
phishing is an attack on the user's perception of authority, where For example, phishing is an attack on the user's perception of
that perception can be misled by presenting similar branding in authority, where that perception can be misled by presenting similar
hypertext, possibly aided by userinfo obfuscating the authority branding in hypertext, possibly aided by userinfo obfuscating the
component (see Section 2.7.1). User agents can reduce the impact of authority component (see Section 2.5.1). User agents can reduce the
phishing attacks by enabling users to easily inspect a target URI impact of phishing attacks by enabling users to easily inspect a
prior to making an action, by prominently distinguishing (or target URI prior to making an action, by prominently distinguishing
rejecting) userinfo when present, and by not sending stored (or rejecting) userinfo when present, and by not sending stored
credentials and cookies when the referring document is from an credentials and cookies when the referring document is from an
unknown or untrusted source. unknown or untrusted source.
9.2. Risks of Intermediaries 11.2. Risks of Intermediaries
By their very nature, HTTP intermediaries are men-in-the-middle and, By their very nature, HTTP intermediaries are men-in-the-middle and,
thus, represent an opportunity for man-in-the-middle attacks. thus, represent an opportunity for man-in-the-middle attacks.
Compromise of the systems on which the intermediaries run can result Compromise of the systems on which the intermediaries run can result
in serious security and privacy problems. Intermediaries might have in serious security and privacy problems. Intermediaries might have
access to security-related information, personal information about access to security-related information, personal information about
individual users and organizations, and proprietary information individual users and organizations, and proprietary information
belonging to users and content providers. A compromised belonging to users and content providers. A compromised
intermediary, or an intermediary implemented or configured without intermediary, or an intermediary implemented or configured without
regard to security and privacy considerations, might be used in the regard to security and privacy considerations, might be used in the
commission of a wide range of potential attacks. commission of a wide range of potential attacks.
Intermediaries that contain a shared cache are especially vulnerable Intermediaries that contain a shared cache are especially vulnerable
to cache poisoning attacks, as described in Section 8 of [RFC7234]. to cache poisoning attacks, as described in Section 7 of [Caching].
Implementers need to consider the privacy and security implications Implementers need to consider the privacy and security implications
of their design and coding decisions, and of the configuration of their design and coding decisions, and of the configuration
options they provide to operators (especially the default options they provide to operators (especially the default
configuration). configuration).
Users need to be aware that intermediaries are no more trustworthy Users need to be aware that intermediaries are no more trustworthy
than the people who run them; HTTP itself cannot solve this problem. than the people who run them; HTTP itself cannot solve this problem.
9.1. Attacks Based on File and Path Names 11.3. Attacks Based on File and Path Names
Origin servers frequently make use of their local file system to Origin servers frequently make use of their local file system to
manage the mapping from effective request URI to resource manage the mapping from effective request URI to resource
representations. Most file systems are not designed to protect representations. Most file systems are not designed to protect
against malicious file or path names. Therefore, an origin server against malicious file or path names. Therefore, an origin server
needs to avoid accessing names that have a special significance to needs to avoid accessing names that have a special significance to
the system when mapping the request target to files, folders, or the system when mapping the request target to files, folders, or
directories. directories.
For example, UNIX, Microsoft Windows, and other operating systems use For example, UNIX, Microsoft Windows, and other operating systems use
skipping to change at line 7194 skipping to change at page 165, line 30
systems have an annoying tendency to prefer user-friendliness over systems have an annoying tendency to prefer user-friendliness over
security when handling invalid or unexpected characters, security when handling invalid or unexpected characters,
recomposition of decomposed characters, and case-normalization of recomposition of decomposed characters, and case-normalization of
case-insensitive names. case-insensitive names.
Attacks based on such special names tend to focus on either denial- Attacks based on such special names tend to focus on either denial-
of-service (e.g., telling the server to read from a COM port) or of-service (e.g., telling the server to read from a COM port) or
disclosure of configuration and source files that are not meant to be disclosure of configuration and source files that are not meant to be
served. served.
9.2. Attacks Based on Command, Code, or Query Injection 11.4. Attacks Based on Command, Code, or Query Injection
Origin servers often use parameters within the URI as a means of Origin servers often use parameters within the URI as a means of
identifying system services, selecting database entries, or choosing identifying system services, selecting database entries, or choosing
a data source. However, data received in a request cannot be a data source. However, data received in a request cannot be
trusted. An attacker could construct any of the request data trusted. An attacker could construct any of the request data
elements (method, request-target, header fields, or body) to contain elements (method, request-target, header fields, or body) to contain
data that might be misinterpreted as a command, code, or query when data that might be misinterpreted as a command, code, or query when
passed through a command invocation, language interpreter, or passed through a command invocation, language interpreter, or
database interface. database interface.
skipping to change at line 7225 skipping to change at page 166, line 12
Parameters ought to be compared to fixed strings and acted upon as a Parameters ought to be compared to fixed strings and acted upon as a
result of that comparison, rather than passed through an interface result of that comparison, rather than passed through an interface
that is not prepared for untrusted data. Received data that isn't that is not prepared for untrusted data. Received data that isn't
based on fixed parameters ought to be carefully filtered or encoded based on fixed parameters ought to be carefully filtered or encoded
to avoid being misinterpreted. to avoid being misinterpreted.
Similar considerations apply to request data when it is stored and Similar considerations apply to request data when it is stored and
later processed, such as within log files, monitoring tools, or when later processed, such as within log files, monitoring tools, or when
included within a data format that allows embedded scripts. included within a data format that allows embedded scripts.
9.3. Attacks via Protocol Element Length 11.5. Attacks via Protocol Element Length
Because HTTP uses mostly textual, character-delimited fields, parsers Because HTTP uses mostly textual, character-delimited fields, parsers
are often vulnerable to attacks based on sending very long (or very are often vulnerable to attacks based on sending very long (or very
slow) streams of data, particularly where an implementation is slow) streams of data, particularly where an implementation is
expecting a protocol element with no predefined length. expecting a protocol element with no predefined length (Section 3.3).
To promote interoperability, specific recommendations are made for To promote interoperability, specific recommendations are made for
minimum size limits on request-line (Section 3.1.1) and header fields minimum size limits on request-line (Section 3 of [Messaging]) and
(Section 3.2). These are minimum recommendations, chosen to be fields (Section 4). These are minimum recommendations, chosen to be
supportable even by implementations with limited resources; it is supportable even by implementations with limited resources; it is
expected that most implementations will choose substantially higher expected that most implementations will choose substantially higher
limits. limits.
A server can reject a message that has a request-target that is too A server can reject a message that has a request-target that is too
long (Section 6.5.12 of [RFC7231]) or a request payload that is too long (Section 9.5.15) or a request payload that is too large
large (Section 6.5.11 of [RFC7231]). Additional status codes related (Section 9.5.14). Additional status codes related to capacity limits
to capacity limits have been defined by extensions to HTTP [RFC6585]. have been defined by extensions to HTTP [RFC6585].
Recipients ought to carefully limit the extent to which they process Recipients ought to carefully limit the extent to which they process
other protocol elements, including (but not limited to) request other protocol elements, including (but not limited to) request
methods, response status phrases, header field-names, numeric values, methods, response status phrases, field names, numeric values, and
and body chunks. Failure to limit such processing can result in body chunks. Failure to limit such processing can result in buffer
buffer overflows, arithmetic overflows, or increased vulnerability to overflows, arithmetic overflows, or increased vulnerability to
denial-of-service attacks. denial-of-service attacks.
9.3. Disclosure of Personal Information 11.6. Disclosure of Personal Information
Clients are often privy to large amounts of personal information, Clients are often privy to large amounts of personal information,
including both information provided by the user to interact with including both information provided by the user to interact with
resources (e.g., the user's name, location, mail address, passwords, resources (e.g., the user's name, location, mail address, passwords,
encryption keys, etc.) and information about the user's browsing encryption keys, etc.) and information about the user's browsing
activity over time (e.g., history, bookmarks, etc.). Implementations activity over time (e.g., history, bookmarks, etc.). Implementations
need to prevent unintentional disclosure of personal information. need to prevent unintentional disclosure of personal information.
9.8. Privacy of Server Log Information 11.7. Privacy of Server Log Information
A server is in the position to save personal data about a user's A server is in the position to save personal data about a user's
requests over time, which might identify their reading patterns or requests over time, which might identify their reading patterns or
subjects of interest. In particular, log information gathered at an subjects of interest. In particular, log information gathered at an
intermediary often contains a history of user agent interaction, intermediary often contains a history of user agent interaction,
across a multitude of sites, that can be traced to individual users. across a multitude of sites, that can be traced to individual users.
HTTP log information is confidential in nature; its handling is often HTTP log information is confidential in nature; its handling is often
constrained by laws and regulations. Log information needs to be constrained by laws and regulations. Log information needs to be
securely stored and appropriate guidelines followed for its analysis. securely stored and appropriate guidelines followed for its analysis.
Anonymization of personal information within individual entries Anonymization of personal information within individual entries
helps, but it is generally not sufficient to prevent real log traces helps, but it is generally not sufficient to prevent real log traces
from being re-identified based on correlation with other access from being re-identified based on correlation with other access
characteristics. As such, access traces that are keyed to a specific characteristics. As such, access traces that are keyed to a specific
client are unsafe to publish even if the key is pseudonymous. client are unsafe to publish even if the key is pseudonymous.
To minimize the risk of theft or accidental publication, log To minimize the risk of theft or accidental publication, log
information ought to be purged of personally identifiable information ought to be purged of personally identifiable
information, including user identifiers, IP addresses, and information, including user identifiers, IP addresses, and user-
user-provided query parameters, as soon as that information is no provided query parameters, as soon as that information is no longer
longer necessary to support operational needs for security, auditing, necessary to support operational needs for security, auditing, or
or fraud control. fraud control.
9.4. Disclosure of Sensitive Information in URIs 11.8. Disclosure of Sensitive Information in URIs
URIs are intended to be shared, not secured, even when they identify URIs are intended to be shared, not secured, even when they identify
secure resources. URIs are often shown on displays, added to secure resources. URIs are often shown on displays, added to
templates when a page is printed, and stored in a variety of templates when a page is printed, and stored in a variety of
unprotected bookmark lists. It is therefore unwise to include unprotected bookmark lists. It is therefore unwise to include
information within a URI that is sensitive, personally identifiable, information within a URI that is sensitive, personally identifiable,
or a risk to disclose. or a risk to disclose.
Authors of services ought to avoid GET-based forms for the submission Authors of services ought to avoid GET-based forms for the submission
of sensitive data because that data will be placed in the of sensitive data because that data will be placed in the request-
request-target. Many existing servers, proxies, and user agents log target. Many existing servers, proxies, and user agents log or
or display the request-target in places where it might be visible to display the request-target in places where it might be visible to
third parties. Such services ought to use POST-based form submission third parties. Such services ought to use POST-based form submission
instead. instead.
Since the Referer header field tells a target site about the context Since the Referer header field tells a target site about the context
that resulted in a request, it has the potential to reveal that resulted in a request, it has the potential to reveal
information about the user's immediate browsing history and any information about the user's immediate browsing history and any
personal information that might be found in the referring resource's personal information that might be found in the referring resource's
URI. Limitations on the Referer header field are described in URI. Limitations on the Referer header field are described in
Section 5.5.2 to address some of its security considerations. Section 8.6.2 to address some of its security considerations.
9.5. Disclosure of Fragment after Redirects 11.9. Disclosure of Fragment after Redirects
Although fragment identifiers used within URI references are not sent Although fragment identifiers used within URI references are not sent
in requests, implementers ought to be aware that they will be visible in requests, implementers ought to be aware that they will be visible
to the user agent and any extensions or scripts running as a result to the user agent and any extensions or scripts running as a result
of the response. In particular, when a redirect occurs and the of the response. In particular, when a redirect occurs and the
original request's fragment identifier is inherited by the new original request's fragment identifier is inherited by the new
reference in Location (Section 7.1.2), this might have the effect of reference in Location (Section 10.1.2), this might have the effect of
disclosing one site's fragment to another site. If the first site disclosing one site's fragment to another site. If the first site
uses personal information in fragments, it ought to ensure that uses personal information in fragments, it ought to ensure that
redirects to other sites include a (possibly empty) fragment redirects to other sites include a (possibly empty) fragment
component in order to block that inheritance. component in order to block that inheritance.
9.6. Disclosure of Product Information 11.10. Disclosure of Product Information
The User-Agent (Section 5.5.3), Via (Section 5.7.1 of [RFC7230]), and The User-Agent (Section 8.6.3), Via (Section 5.7.1), and Server
Server (Section 7.4.2) header fields often reveal information about (Section 10.4.3) header fields often reveal information about the
the respective sender's software systems. In theory, this can make respective sender's software systems. In theory, this can make it
it easier for an attacker to exploit known security holes; in easier for an attacker to exploit known security holes; in practice,
practice, attackers tend to try all potential holes regardless of the attackers tend to try all potential holes regardless of the apparent
apparent software versions being used. software versions being used.
Proxies that serve as a portal through a network firewall ought to Proxies that serve as a portal through a network firewall ought to
take special precautions regarding the transfer of header information take special precautions regarding the transfer of header information
that might identify hosts behind the firewall. The Via header field that might identify hosts behind the firewall. The Via header field
allows intermediaries to replace sensitive machine names with allows intermediaries to replace sensitive machine names with
pseudonyms. pseudonyms.
9.7. Browser Fingerprinting 11.11. Browser Fingerprinting
Browser fingerprinting is a set of techniques for identifying a Browser fingerprinting is a set of techniques for identifying a
specific user agent over time through its unique set of specific user agent over time through its unique set of
characteristics. These characteristics might include information characteristics. These characteristics might include information
related to its TCP behavior, feature capabilities, and scripting related to its TCP behavior, feature capabilities, and scripting
environment, though of particular interest here is the set of unique environment, though of particular interest here is the set of unique
characteristics that might be communicated via HTTP. Fingerprinting characteristics that might be communicated via HTTP. Fingerprinting
is considered a privacy concern because it enables tracking of a user is considered a privacy concern because it enables tracking of a user
agent's behavior over time without the corresponding controls that agent's behavior over time ([Bujlow]) without the corresponding
the user might have over other forms of data collection (e.g., controls that the user might have over other forms of data collection
cookies). Many general-purpose user agents (i.e., Web browsers) have (e.g., cookies). Many general-purpose user agents (i.e., Web
taken steps to reduce their fingerprints. browsers) have taken steps to reduce their fingerprints.
There are a number of request header fields that might reveal There are a number of request header fields that might reveal
information to servers that is sufficiently unique to enable information to servers that is sufficiently unique to enable
fingerprinting. The From header field is the most obvious, though it fingerprinting. The From header field is the most obvious, though it
is expected that From will only be sent when self-identification is is expected that From will only be sent when self-identification is
desired by the user. Likewise, Cookie header fields are deliberately desired by the user. Likewise, Cookie header fields are deliberately
designed to enable re-identification, so fingerprinting concerns only designed to enable re-identification, so fingerprinting concerns only
apply to situations where cookies are disabled or restricted by the apply to situations where cookies are disabled or restricted by the
user agent's configuration. user agent's configuration.
The User-Agent header field might contain enough information to The User-Agent header field might contain enough information to
uniquely identify a specific device, usually when combined with other uniquely identify a specific device, usually when combined with other
characteristics, particularly if the user agent sends excessive characteristics, particularly if the user agent sends excessive
details about the user's system or extensions. However, the source details about the user's system or extensions. However, the source
of unique information that is least expected by users is proactive of unique information that is least expected by users is proactive
negotiation (Section 5.3), including the Accept, Accept-Charset, negotiation (Section 8.4), including the Accept, Accept-Charset,
Accept-Encoding, and Accept-Language header fields. Accept-Encoding, and Accept-Language header fields.
In addition to the fingerprinting concern, detailed use of the In addition to the fingerprinting concern, detailed use of the
Accept-Language header field can reveal information the user might Accept-Language header field can reveal information the user might
consider to be of a private nature. For example, understanding a consider to be of a private nature. For example, understanding a
given language set might be strongly correlated to membership in a given language set might be strongly correlated to membership in a
particular ethnic group. An approach that limits such loss of particular ethnic group. An approach that limits such loss of
privacy would be for a user agent to omit the sending of privacy would be for a user agent to omit the sending of Accept-
Accept-Language except for sites that have been whitelisted, perhaps Language except for sites that have been whitelisted, perhaps via
via interaction after detecting a Vary header field that indicates interaction after detecting a Vary header field that indicates
language negotiation might be useful. language negotiation might be useful.
In environments where proxies are used to enhance privacy, user In environments where proxies are used to enhance privacy, user
agents ought to be conservative in sending proactive negotiation agents ought to be conservative in sending proactive negotiation
header fields. General-purpose user agents that provide a high header fields. General-purpose user agents that provide a high
degree of header field configurability ought to inform users about degree of header field configurability ought to inform users about
the loss of privacy that might result if too much detail is provided. the loss of privacy that might result if too much detail is provided.
As an extreme privacy measure, proxies could filter the proactive As an extreme privacy measure, proxies could filter the proactive
negotiation header fields in relayed requests. negotiation header fields in relayed requests.
8. [Conditionals] Security Considerations 11.12. Validator Retention
This section is meant to inform developers, information providers,
and users of known security concerns specific to the HTTP conditional
request mechanisms. More general security considerations are
addressed in HTTP "Message Syntax and Routing" [RFC7230] and
"Semantics and Content" [RFC7231].
The validators defined by this specification are not intended to The validators defined by this specification are not intended to
ensure the validity of a representation, guard against malicious ensure the validity of a representation, guard against malicious
changes, or detect man-in-the-middle attacks. At best, they enable changes, or detect man-in-the-middle attacks. At best, they enable
more efficient cache updates and optimistic concurrent writes when more efficient cache updates and optimistic concurrent writes when
all participants are behaving nicely. At worst, the conditions will all participants are behaving nicely. At worst, the conditions will
fail and the client will receive a response that is no more harmful fail and the client will receive a response that is no more harmful
than an HTTP exchange without conditional requests. than an HTTP exchange without conditional requests.
An entity-tag can be abused in ways that create privacy risks. For An entity-tag can be abused in ways that create privacy risks. For
skipping to change at line 7412 skipping to change at page 170, line 5
entity-tag that is unique to the user or user agent, send it in a entity-tag that is unique to the user or user agent, send it in a
cacheable response with a long freshness time, and then read that cacheable response with a long freshness time, and then read that
entity-tag in later conditional requests as a means of re-identifying entity-tag in later conditional requests as a means of re-identifying
that user or user agent. Such an identifying tag would become a that user or user agent. Such an identifying tag would become a
persistent identifier for as long as the user agent retained the persistent identifier for as long as the user agent retained the
original cache entry. User agents that cache representations ought original cache entry. User agents that cache representations ought
to ensure that the cache is cleared or replaced whenever the user to ensure that the cache is cleared or replaced whenever the user
performs privacy-maintaining actions, such as clearing stored cookies performs privacy-maintaining actions, such as clearing stored cookies
or changing to a private browsing mode. or changing to a private browsing mode.
6. [Range] Security Considerations 11.13. Denial-of-Service Attacks Using Range
This section is meant to inform developers, information providers,
and users of known security concerns specific to the HTTP range
request mechanisms. More general security considerations are
addressed in HTTP messaging [RFC7230] and semantics [RFC7231].
6.1. Denial-of-Service Attacks Using Range
Unconstrained multiple range requests are susceptible to denial-of- Unconstrained multiple range requests are susceptible to denial-of-
service attacks because the effort required to request many service attacks because the effort required to request many
overlapping ranges of the same data is tiny compared to the time, overlapping ranges of the same data is tiny compared to the time,
memory, and bandwidth consumed by attempting to serve the requested memory, and bandwidth consumed by attempting to serve the requested
data in many parts. Servers ought to ignore, coalesce, or reject data in many parts. Servers ought to ignore, coalesce, or reject
egregious range requests, such as requests for more than two egregious range requests, such as requests for more than two
overlapping ranges or for many small ranges in a single set, overlapping ranges or for many small ranges in a single set,
particularly when the ranges are requested out of order for no particularly when the ranges are requested out of order for no
apparent reason. Multipart range requests are not designed to apparent reason. Multipart range requests are not designed to
support random access. support random access.
6. [Auth] Security Considerations 11.14. Authentication Considerations
This section is meant to inform developers, information providers,
and users of known security concerns specific to HTTP authentication.
More general security considerations are addressed in HTTP messaging
[RFC7230] and semantics [RFC7231].
Everything about the topic of HTTP authentication is a security Everything about the topic of HTTP authentication is a security
consideration, so the list of considerations below is not exhaustive. consideration, so the list of considerations below is not exhaustive.
Furthermore, it is limited to security considerations regarding the Furthermore, it is limited to security considerations regarding the
authentication framework, in general, rather than discussing all of authentication framework, in general, rather than discussing all of
the potential considerations for specific authentication schemes the potential considerations for specific authentication schemes
(which ought to be documented in the specifications that define those (which ought to be documented in the specifications that define those
schemes). Various organizations maintain topical information and schemes). Various organizations maintain topical information and
links to current research on Web application security (e.g., links to current research on Web application security (e.g.,
[OWASP]), including common pitfalls for implementing and using the [OWASP]), including common pitfalls for implementing and using the
authentication schemes found in practice. authentication schemes found in practice.
6.1. Confidentiality of Credentials 11.14.1. Confidentiality of Credentials
The HTTP authentication framework does not define a single mechanism The HTTP authentication framework does not define a single mechanism
for maintaining the confidentiality of credentials; instead, each for maintaining the confidentiality of credentials; instead, each
authentication scheme defines how the credentials are encoded prior authentication scheme defines how the credentials are encoded prior
to transmission. While this provides flexibility for the development to transmission. While this provides flexibility for the development
of future authentication schemes, it is inadequate for the protection of future authentication schemes, it is inadequate for the protection
of existing schemes that provide no confidentiality on their own, or of existing schemes that provide no confidentiality on their own, or
that do not sufficiently protect against replay attacks. that do not sufficiently protect against replay attacks.
Furthermore, if the server expects credentials that are specific to Furthermore, if the server expects credentials that are specific to
each individual user, the exchange of those credentials will have the each individual user, the exchange of those credentials will have the
effect of identifying that user even if the content within effect of identifying that user even if the content within
credentials remains confidential. credentials remains confidential.
HTTP depends on the security properties of the underlying transport- HTTP depends on the security properties of the underlying transport-
or session-level connection to provide confidential transmission of or session-level connection to provide confidential transmission of
header fields. In other words, if a server limits access to fields. In other words, if a server limits access to authenticated
authenticated users using this framework, the server needs to ensure users using this framework, the server needs to ensure that the
that the connection is properly secured in accordance with the nature connection is properly secured in accordance with the nature of the
of the authentication scheme used. For example, services that depend authentication scheme used. For example, services that depend on
on individual user authentication often require a connection to be individual user authentication often require a connection to be
secured with TLS ("Transport Layer Security", [RFC5246]) prior to secured with TLS ("Transport Layer Security", [RFC8446]) prior to
exchanging any credentials. exchanging any credentials.
6.2. Authentication Credentials and Idle Clients 11.14.2. Credentials and Idle Clients
Existing HTTP clients and user agents typically retain authentication Existing HTTP clients and user agents typically retain authentication
information indefinitely. HTTP does not provide a mechanism for the information indefinitely. HTTP does not provide a mechanism for the
origin server to direct clients to discard these cached credentials, origin server to direct clients to discard these cached credentials,
since the protocol has no awareness of how credentials are obtained since the protocol has no awareness of how credentials are obtained
or managed by the user agent. The mechanisms for expiring or or managed by the user agent. The mechanisms for expiring or
revoking credentials can be specified as part of an authentication revoking credentials can be specified as part of an authentication
scheme definition. scheme definition.
Circumstances under which credential caching can interfere with the Circumstances under which credential caching can interfere with the
skipping to change at line 7500 skipping to change at page 171, line 33
o Applications that include a session termination indication (such o Applications that include a session termination indication (such
as a "logout" or "commit" button on a page) after which the server as a "logout" or "commit" button on a page) after which the server
side of the application "knows" that there is no further reason side of the application "knows" that there is no further reason
for the client to retain the credentials. for the client to retain the credentials.
User agents that cache credentials are encouraged to provide a User agents that cache credentials are encouraged to provide a
readily accessible mechanism for discarding cached credentials under readily accessible mechanism for discarding cached credentials under
user control. user control.
6.3. Protection Spaces 11.14.3. Protection Spaces
Authentication schemes that solely rely on the "realm" mechanism for Authentication schemes that solely rely on the "realm" mechanism for
establishing a protection space will expose credentials to all establishing a protection space will expose credentials to all
resources on an origin server. Clients that have successfully made resources on an origin server. Clients that have successfully made
authenticated requests with a resource can use the same authenticated requests with a resource can use the same
authentication credentials for other resources on the same origin authentication credentials for other resources on the same origin
server. This makes it possible for a different resource to harvest server. This makes it possible for a different resource to harvest
authentication credentials for other resources. authentication credentials for other resources.
This is of particular concern when an origin server hosts resources This is of particular concern when an origin server hosts resources
for multiple parties under the same canonical root URI (Section 2.2). for multiple parties under the same canonical root URI
Possible mitigation strategies include restricting direct access to (Section 8.5.2). Possible mitigation strategies include restricting
authentication credentials (i.e., not making the content of the direct access to authentication credentials (i.e., not making the
Authorization request header field available), and separating content of the Authorization request header field available), and
protection spaces by using a different host name (or port number) for separating protection spaces by using a different host name (or port
each party. number) for each party.
13.14.4. [RFC7615] 11.14.4. Additional Response Fields
Adding information to HTTP responses that are sent over an Adding information to responses that are sent over an unencrypted
unencrypted channel can affect security and privacy. The presence of channel can affect security and privacy. The presence of the
the header fields alone indicates that HTTP authentication is in use. Authentication-Info and Proxy-Authentication-Info header fields alone
Additional information could be exposed by the contents of the indicates that HTTP authentication is in use. Additional information
authentication-scheme specific parameters; this will have to be could be exposed by the contents of the authentication-scheme
considered in the definitions of these schemes. specific parameters; this will have to be considered in the
definitions of these schemes.
14. IANA Considerations 12. IANA Considerations
The change controller for the above registrations is: "IETF The change controller for the following registrations is: "IETF
(iesg@ietf.org) - Internet Engineering Task Force". (iesg@ietf.org) - Internet Engineering Task Force".
12.1. URI Scheme Registration 12.1. URI Scheme Registration
IANA maintains the registry of URI Schemes [BCP115] at Please update the registry of URI Schemes [BCP35] at
<http://www.iana.org/assignments/uri-schemes/>. <https://www.iana.org/assignments/uri-schemes/> with the permanent
schemes listed in the first table of Section 2.5.
This document defines the following URI schemes, so the "Permanent
URI Schemes" registry has been updated accordingly.
12.2. Method Registration 12.2. Method Registration
The "Hypertext Transfer Protocol (HTTP) Method Registry" has been Please update the "Hypertext Transfer Protocol (HTTP) Method
populated with the registrations below: Registry" at <https://www.iana.org/assignments/http-methods> with the
registration procedure of Section 7.4.1 and the method names
summarized in the table of Section 7.2.
12.3. Status Code Registration 12.3. Status Code Registration
The status code registry has been updated with the registrations Please update the "Hypertext Transfer Protocol (HTTP) Status Code
below: Registry" at <https://www.iana.org/assignments/http-status-codes>
with the registration procedure of Section 9.7.1 and the status code
values summarized in the table of Section 9.1.
Additionally, please update the following entry in the Hypertext
Transfer Protocol (HTTP) Status Code Registry:
Value: 418
Description: (Unused)
Reference Section 9.5.19
12.4. HTTP Field Name Registration 12.4. HTTP Field Name Registration
[new section] Please create a new registry as outlined in Section 4.3.2.
After creating the registry, all entries in the Permanent and
Provisional Message Header Registries with the protocol 'http' are to
be moved to it, with the following changes applied:
1. The 'Applicable Protocol' field is to be omitted.
2. Entries with a status of 'standard', 'experimental', 'reserved',
or 'informational' are to have a status of 'permanent'.
3. Provisional entries without a status are to have a status of
'provisional'.
4. Permanent entries without a status (after confirmation that the
registration document did not define one) will have a status of
'provisional'. The Expert(s) can choose to update their status
if there is evidence that another is more appropriate.
Please annotate the Permanent and Provisional Message Header
registries to indicate that HTTP field name registrations have moved,
with an appropriate link.
After that is complete, please update the new registry with the field
names listed in the table of Section 4.3.
Finally, please update the "Content-MD5" entry in the new registry to
have a status of 'obsoleted' with references to Section 14.15 of
[RFC2616] (for the definition of the header field) and Appendix B of
[RFC7231] (which removed the field definition from the updated
specification).
12.5. Authentication Scheme Registration 12.5. Authentication Scheme Registration
The "Hypertext Transfer Protocol (HTTP) Authentication Scheme Please update the "Hypertext Transfer Protocol (HTTP) Authentication
Registry" defines the namespace for the authentication schemes in Scheme Registry" at <https://www.iana.org/assignments/http-
challenges and credentials. It has been created and is now authschemes> with the registration procedure of Section 8.5.5.1. No
maintained at <http://www.iana.org/assignments/http-authschemes>. authentication schemes are defined in this document.
12.6. Content Coding Registration 12.6. Content Coding Registration
IANA maintains the "HTTP Content Coding Registry" at Please update the "HTTP Content Coding Registry" at
<http://www.iana.org/assignments/http-parameters>. <https://www.iana.org/assignments/http-parameters/> with the
registration procedure of Section 6.1.2.4 and the content coding
The "HTTP Content Coding Registry" has been updated with the names summarized in the table of Section 6.1.2.
registrations below:
12.7. Range Unit Registration 12.7. Range Unit Registration
The initial range unit registry contains the registrations below: Please update the "HTTP Range Unit Registry" at
<https://www.iana.org/assignments/http-parameters/> with the
registration procedure of Section 6.1.4.4 and the range unit names
summarized in the table of Section 6.1.4.
12.8. Media Type Registration 12.8. Media Type Registration
IANA maintains the registry of Internet media types [BCP13] at Please update the "Media Types" registry at
<http://www.iana.org/assignments/media-types>. <https://www.iana.org/assignments/media-types> with the registration
information in Section 6.3.5 for the media type "multipart/
byteranges".
12.9. Port Registration
Please update the "Service Name and Transport Protocol Port Number"
registry at <https://www.iana.org/assignments/service-names-port-
numbers/> for the services on ports 80 and 443 that use UDP or TCP
to:
1. use this document as "Reference", and
2. when currently unspecified, set "Assignee" to "IESG" and
"Contact" to "IETF_Chair".
13. References 13. References
13.1. Normative References 13.1. Normative References
[RFC0793] Postel, J., "Transmission Control Protocol", STD 7, [Caching] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
RFC 793, September 1981. Ed., "HTTP Caching", draft-ietf-httpbis-cache-07 (work in
progress), March 2020.
[Messaging]
Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
Ed., "HTTP/1.1 Messaging", draft-ietf-httpbis-messaging-07
(work in progress), March 2020.
[RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,
<https://www.rfc-editor.org/info/rfc793>.
[RFC1950] Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data Format
Specification version 3.3", RFC 1950,
DOI 10.17487/RFC1950, May 1996,
<https://www.rfc-editor.org/info/rfc1950>.
[RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
version 1.3", RFC 1951, DOI 10.17487/RFC1951, May 1996,
<https://www.rfc-editor.org/info/rfc1951>.
[RFC1952] Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and G.
Randers-Pehrson, "GZIP file format specification version
4.3", RFC 1952, DOI 10.17487/RFC1952, May 1996,
<https://www.rfc-editor.org/info/rfc1952>.
[RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996. Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
<https://www.rfc-editor.org/info/rfc2045>.
[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046, Extensions (MIME) Part Two: Media Types", RFC 2046,
November 1996. DOI 10.17487/RFC2046, November 1996,
<https://www.rfc-editor.org/info/rfc2046>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005. RFC 3986, DOI 10.17487/RFC3986, January 2005,
<https://www.rfc-editor.org/info/rfc3986>.
[RFC4647] Phillips, A., Ed. and M. Davis, Ed., "Matching of Language [RFC4647] Phillips, A., Ed. and M. Davis, Ed., "Matching of Language
Tags", BCP 47, RFC 4647, September 2006. Tags", BCP 47, RFC 4647, DOI 10.17487/RFC4647, September
2006, <https://www.rfc-editor.org/info/rfc4647>.
[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
Encodings", RFC 4648, October 2006. Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
<https://www.rfc-editor.org/info/rfc4648>.
[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234, January 2008. Specifications: ABNF", STD 68, RFC 5234,
DOI 10.17487/RFC5234, January 2008,
<https://www.rfc-editor.org/info/rfc5234>.
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
<https://www.rfc-editor.org/info/rfc5280>.
[RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
Languages", BCP 47, RFC 5646, September 2009. Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
September 2009, <https://www.rfc-editor.org/info/rfc5646>.
[RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
Internationalization in the IETF", BCP 166, RFC 6365, Internationalization in the IETF", BCP 166, RFC 6365,
September 2011. DOI 10.17487/RFC6365, September 2011,
<https://www.rfc-editor.org/info/rfc6365>.
[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
RFC 7230, June 2014.
[RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF",
Protocol (HTTP/1.1): Conditional Requests", RFC 7232, RFC 7405, DOI 10.17487/RFC7405, December 2014,
June 2014. <https://www.rfc-editor.org/info/rfc7405>.
[RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed., [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
"Hypertext Transfer Protocol (HTTP/1.1): Range Requests", 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
RFC 7233, June 2014. May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, [USASCII] American National Standards Institute, "Coded Character
Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching", Set -- 7-bit American Standard Code for Information
RFC 7234, June 2014. Interchange", ANSI X3.4, 1986.
[RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer [Welch] Welch, T., "A Technique for High-Performance Data
Protocol (HTTP/1.1): Authentication", RFC 7235, June 2014. Compression", IEEE Computer 17(6),
DOI 10.1109/MC.1984.1659158, June 1984,
<https://ieeexplore.ieee.org/document/1659158/>.
13.2. Informative References 13.2. Informative References
[BCP115] Hansen, T., Hardie, T., and L. Masinter, "Guidelines
and Registration Procedures for New URI Schemes",
BCP 115, RFC 4395, February 2006.
[BCP13] Freed, N., Klensin, J., and T. Hansen, "Media Type [BCP13] Freed, N., Klensin, J., and T. Hansen, "Media Type
Specifications and Registration Procedures", BCP 13, Specifications and Registration Procedures", BCP 13,
RFC 6838, January 2013. RFC 6838, January 2013,
<https://www.rfc-editor.org/info/bcp13>.
[BCP178] Saint-Andre, P., Crocker, D., and M. Nottingham, [BCP178] Saint-Andre, P., Crocker, D., and M. Nottingham,
"Deprecating the "X-" Prefix and Similar Constructs in "Deprecating the "X-" Prefix and Similar Constructs in
Application Protocols", BCP 178, RFC 6648, June 2012. Application Protocols", BCP 178, RFC 6648, June 2012,
<https://www.rfc-editor.org/info/bcp178>.
[BCP90] Klyne, G., Nottingham, M., and J. Mogul, "Registration [BCP35] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
Procedures for Message Header Fields", BCP 90, RFC 3864, and Registration Procedures for URI Schemes", BCP 35,
September 2004. RFC 7595, June 2015,
<https://www.rfc-editor.org/info/bcp35>.
[Georgiev] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., [Bujlow] Bujlow, T., Carela-Espanol, V., Sole-Pareta, J., and P.
Boneh, D., and V. Shmatikov, "The Most Dangerous Code Barlet-Ros, "A Survey on Web Tracking: Mechanisms,
in the World: Validating SSL Certificates in Non- Implications, and Defenses",
browser Software", In Proceedings of the 2012 ACM DOI 10.1109/JPROC.2016.2637878, Proceedings of the
Conference on Computer and Communications Security (CCS IEEE 105(8), August 2017.
'12), pp. 38-49, October 2012,
<http://doi.acm.org/10.1145/2382196.2382204>. [Err1912] RFC Errata, Erratum ID 1912, RFC 2978,
<https://www.rfc-editor.org/errata/eid1912>.
[Err5433] RFC Errata, Erratum ID 5433, RFC 2978,
<https://www.rfc-editor.org/errata/eid5433>.
[Georgiev]
Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh,
D., and V. Shmatikov, "The Most Dangerous Code in the
World: Validating SSL Certificates in Non-browser
Software", DOI 10.1145/2382196.2382204, In Proceedings of
the 2012 ACM Conference on Computer and Communications
Security (CCS '12), pp. 38-49, October 2012.
[ISO-8859-1]
International Organization for Standardization,
"Information technology -- 8-bit single-byte coded graphic
character sets -- Part 1: Latin alphabet No. 1", ISO/
IEC 8859-1:1998, 1998.
[Kri2001] Kristol, D., "HTTP Cookies: Standards, Privacy, and
Politics", ACM Transactions on Internet Technology 1(2),
November 2001, <http://arxiv.org/abs/cs.SE/0105018>.
[OWASP] van der Stock, A., Ed., "A Guide to Building Secure Web [OWASP] van der Stock, A., Ed., "A Guide to Building Secure Web
Applications and Web Services", The Open Web Application Applications and Web Services", The Open Web Application
Security Project (OWASP) 2.0.1, July 2005, Security Project (OWASP) 2.0.1, July 2005,
<https://www.owasp.org/>. <https://www.owasp.org/>.
[REST] Fielding, R., "Architectural Styles and the Design of [REST] Fielding, R., "Architectural Styles and the Design of
Network-based Software Architectures", Network-based Software Architectures",
Doctoral Dissertation, University of California, Irvine, Doctoral Dissertation, University of California, Irvine,
September 2000, September 2000,
<http://roy.gbiv.com/pubs/dissertation/top.htm>. <https://roy.gbiv.com/pubs/dissertation/top.htm>.
[RFC1919] Chatel, M., "Classical versus Transparent IP Proxies", [RFC1919] Chatel, M., "Classical versus Transparent IP Proxies",
RFC 1919, March 1996. RFC 1919, DOI 10.17487/RFC1919, March 1996,
<https://www.rfc-editor.org/info/rfc1919>.
[RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen, "Hypertext [RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen, "Hypertext
Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996. Transfer Protocol -- HTTP/1.0", RFC 1945,
DOI 10.17487/RFC1945, May 1996,
<https://www.rfc-editor.org/info/rfc1945>.
[RFC2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
Part Three: Message Header Extensions for Non-ASCII Text",
RFC 2047, DOI 10.17487/RFC2047, November 1996,
<https://www.rfc-editor.org/info/rfc2047>.
[RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T. [RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T.
Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",
RFC 2068, January 1997. RFC 2068, DOI 10.17487/RFC2068, January 1997,
<https://www.rfc-editor.org/info/rfc2068>.
[RFC2145] Mogul, J., Fielding, R., Gettys, J., and H. Nielsen, [RFC2145] Mogul, J., Fielding, R., Gettys, J., and H. Nielsen, "Use
"Use and Interpretation of HTTP Version Numbers", and Interpretation of HTTP Version Numbers", RFC 2145,
RFC 2145, May 1997. DOI 10.17487/RFC2145, May 1997,
<https://www.rfc-editor.org/info/rfc2145>.
[RFC2295] Holtman, K. and A. Mutz, "Transparent Content Negotiation [RFC2295] Holtman, K. and A. Mutz, "Transparent Content Negotiation
in HTTP", RFC 2295, March 1998. in HTTP", RFC 2295, DOI 10.17487/RFC2295, March 1998,
<https://www.rfc-editor.org/info/rfc2295>.
[RFC2388] Masinter, L., "Returning Values from Forms: multipart/ [RFC2324] Masinter, L., "Hyper Text Coffee Pot Control Protocol
form-data", RFC 2388, August 1998. (HTCPCP/1.0)", RFC 2324, DOI 10.17487/RFC2324, April 1998,
<https://www.rfc-editor.org/info/rfc2324>.
[RFC2557] Palme, F., Hopmann, A., Shelness, N., and E. Stefferud, [RFC2557] Palme, F., Hopmann, A., Shelness, N., and E. Stefferud,
"MIME Encapsulation of Aggregate Documents, such as HTML "MIME Encapsulation of Aggregate Documents, such as HTML
(MHTML)", RFC 2557, March 1999. (MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,
<https://www.rfc-editor.org/info/rfc2557>.
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999. Transfer Protocol -- HTTP/1.1", RFC 2616,
DOI 10.17487/RFC2616, June 1999,
<https://www.rfc-editor.org/info/rfc2616>.
[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, "HTTP Leach, P., Luotonen, A., and L. Stewart, "HTTP
Authentication: Basic and Digest Access Authentication", Authentication: Basic and Digest Access Authentication",
RFC 2617, June 1999. RFC 2617, DOI 10.17487/RFC2617, June 1999,
<https://www.rfc-editor.org/info/rfc2617>.
[RFC2774] Frystyk, H., Leach, P., and S. Lawrence, "An HTTP [RFC2774] Frystyk, H., Leach, P., and S. Lawrence, "An HTTP
Extension Framework", RFC 2774, February 2000. Extension Framework", RFC 2774, DOI 10.17487/RFC2774,
February 2000, <https://www.rfc-editor.org/info/rfc2774>.
[RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
HTTP/1.1", RFC 2817, May 2000.
[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000. [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
DOI 10.17487/RFC2818, May 2000,
<https://www.rfc-editor.org/info/rfc2818>.
[RFC2978] Freed, N. and J. Postel, "IANA Charset Registration [RFC2978] Freed, N. and J. Postel, "IANA Charset Registration
Procedures", BCP 19, RFC 2978, October 2000. Procedures", BCP 19, RFC 2978, DOI 10.17487/RFC2978,
October 2000, <https://www.rfc-editor.org/info/rfc2978>.
[RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web [RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
Replication and Caching Taxonomy", RFC 3040, Replication and Caching Taxonomy", RFC 3040,
January 2001. DOI 10.17487/RFC3040, January 2001,
<https://www.rfc-editor.org/info/rfc3040>.
[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements", Rose, "DNS Security Introduction and Requirements",
RFC 4033, March 2005. RFC 4033, DOI 10.17487/RFC4033, March 2005,
<https://www.rfc-editor.org/info/rfc4033>.
[RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
Kerberos and NTLM HTTP Authentication in Microsoft Kerberos and NTLM HTTP Authentication in Microsoft
Windows", RFC 4559, June 2006. Windows", RFC 4559, DOI 10.17487/RFC4559, June 2006,
<https://www.rfc-editor.org/info/rfc4559>.
[RFC4918] Dusseault, L., Ed., "HTTP Extensions for Web Distributed [RFC4918] Dusseault, L., Ed., "HTTP Extensions for Web Distributed
Authoring and Versioning (WebDAV)", RFC 4918, June 2007. Authoring and Versioning (WebDAV)", RFC 4918,
DOI 10.17487/RFC4918, June 2007,
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an <https://www.rfc-editor.org/info/rfc4918>.
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.
[RFC5322] Resnick, P., "Internet Message Format", RFC 5322, [RFC5322] Resnick, P., "Internet Message Format", RFC 5322,
October 2008. DOI 10.17487/RFC5322, October 2008,
<https://www.rfc-editor.org/info/rfc5322>.
[RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP", [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010. RFC 5789, DOI 10.17487/RFC5789, March 2010,
<https://www.rfc-editor.org/info/rfc5789>.
[RFC5861] Nottingham, M., "HTTP Cache-Control Extensions for Stale
Content", RFC 5861, April 2010.
[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
"Network Time Protocol Version 4: Protocol and Algorithms "Network Time Protocol Version 4: Protocol and Algorithms
Specification", RFC 5905, June 2010. Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
<https://www.rfc-editor.org/info/rfc5905>.
[RFC5987] Reschke, J., "Character Set and Language Encoding for
Hypertext Transfer Protocol (HTTP) Header Field
Parameters", RFC 5987, August 2010.
[RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010. [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
2011, <https://www.rfc-editor.org/info/rfc6125>.
[RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265, [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
April 2011. DOI 10.17487/RFC6265, April 2011,
<https://www.rfc-editor.org/info/rfc6265>.
[RFC6266] Reschke, J., "Use of the Content-Disposition Header Field [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
in the Hypertext Transfer Protocol (HTTP)", RFC 6266, DOI 10.17487/RFC6454, December 2011,
June 2011. <https://www.rfc-editor.org/info/rfc6454>.
[RFC7238] Reschke, J., "The Hypertext Transfer Protocol (HTTP) [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
Status Code 308 (Permanent Redirect)", RFC 7238, Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,
June 2014. <https://www.rfc-editor.org/info/rfc6585>.
[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
RFC 7230, DOI 10.17487/RFC7230, June 2014,
<https://www.rfc-editor.org/info/rfc7230>.
[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
DOI 10.17487/RFC7231, June 2014,
<https://www.rfc-editor.org/info/rfc7231>.
[RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
DOI 10.17487/RFC7232, June 2014,
<https://www.rfc-editor.org/info/rfc7232>.
[RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
"Hypertext Transfer Protocol (HTTP): Range Requests",
RFC 7233, DOI 10.17487/RFC7233, June 2014,
<https://www.rfc-editor.org/info/rfc7233>.
[RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Authentication", RFC 7235,
DOI 10.17487/RFC7235, June 2014,
<https://www.rfc-editor.org/info/rfc7235>.
[RFC7538] Reschke, J., "The Hypertext Transfer Protocol Status Code
308 (Permanent Redirect)", RFC 7538, DOI 10.17487/RFC7538,
April 2015, <https://www.rfc-editor.org/info/rfc7538>.
[RFC7578] Masinter, L., "Returning Values from Forms: multipart/
form-data", RFC 7578, DOI 10.17487/RFC7578, July 2015,
<https://www.rfc-editor.org/info/rfc7578>.
[RFC7615] Reschke, J., "HTTP Authentication-Info and Proxy-
Authentication-Info Response Header Fields", RFC 7615,
DOI 10.17487/RFC7615, September 2015,
<https://www.rfc-editor.org/info/rfc7615>.
[RFC7616] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP
Digest Access Authentication", RFC 7616,
DOI 10.17487/RFC7616, September 2015,
<https://www.rfc-editor.org/info/rfc7616>.
[RFC7617] Reschke, J., "The 'Basic' HTTP Authentication Scheme",
RFC 7617, DOI 10.17487/RFC7617, September 2015,
<https://www.rfc-editor.org/info/rfc7617>.
[RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
April 2016, <https://www.rfc-editor.org/info/rfc7838>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8187] Reschke, J., "Indicating Character Encoding and Language
for HTTP Header Field Parameters", RFC 8187,
DOI 10.17487/RFC8187, September 2017,
<https://www.rfc-editor.org/info/rfc8187>.
[RFC8246] McManus, P., "HTTP Immutable Responses", RFC 8246,
DOI 10.17487/RFC8246, September 2017,
<https://www.rfc-editor.org/info/rfc8246>.
[RFC8288] Nottingham, M., "Web Linking", RFC 8288,
DOI 10.17487/RFC8288, October 2017,
<https://www.rfc-editor.org/info/rfc8288>.
[RFC8336] Nottingham, M. and E. Nygren, "The ORIGIN HTTP/2 Frame",
RFC 8336, DOI 10.17487/RFC8336, March 2018,
<https://www.rfc-editor.org/info/rfc8336>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[Sniffing]
WHATWG, "MIME Sniffing",
<https://mimesniff.spec.whatwg.org>.
Appendix A. Collected ABNF Appendix A. Collected ABNF
In the collected ABNF below, list rules are expanded as per Section In the collected ABNF below, list rules are expanded as per
1.2 of [RFC7230]. Section 4.5.
Accept = [ ( "," / ( media-range [ accept-params ] ) ) *( OWS "," [ Accept = [ ( "," / ( media-range [ accept-params ] ) ) *( OWS "," [
OWS ( media-range [ accept-params ] ) ] ) ] OWS ( media-range [ accept-params ] ) ] ) ]
Accept-Charset = *( "," OWS ) ( ( charset / "*" ) [ weight ] ) *( OWS Accept-Charset = *( "," OWS ) ( ( charset / "*" ) [ weight ] ) *( OWS
"," [ OWS ( ( charset / "*" ) [ weight ] ) ] ) "," [ OWS ( ( charset / "*" ) [ weight ] ) ] )
Accept-Encoding = [ ( "," / ( codings [ weight ] ) ) *( OWS "," [ OWS Accept-Encoding = [ ( "," / ( codings [ weight ] ) ) *( OWS "," [ OWS
( codings [ weight ] ) ] ) ] ( codings [ weight ] ) ] ) ]
Accept-Language = *( "," OWS ) ( language-range [ weight ] ) *( OWS Accept-Language = *( "," OWS ) ( language-range [ weight ] ) *( OWS
"," [ OWS ( language-range [ weight ] ) ] ) "," [ OWS ( language-range [ weight ] ) ] )
Allow = [ ( "," / method ) *( OWS "," [ OWS method ] ) ] Accept-Ranges = acceptable-ranges
Allow = [ method ] *( OWS "," OWS [ method ] )
Authentication-Info = [ auth-param ] *( OWS "," OWS [ auth-param ] )
Authorization = credentials
BWS = <BWS, see [RFC7230], Section 3.2.3> BWS = OWS
Content-Encoding = *( "," OWS ) content-coding *( OWS "," [ OWS Content-Encoding = [ content-coding ] *( OWS "," OWS [ content-coding
content-coding ] ) ] )
Content-Language = *( "," OWS ) language-tag *( OWS "," [ OWS Content-Language = [ language-tag ] *( OWS "," OWS [ language-tag ]
language-tag ] ) )
Content-Length = 1*DIGIT
Content-Location = absolute-URI / partial-URI Content-Location = absolute-URI / partial-URI
Content-Range = range-unit SP ( range-resp / unsatisfied-range )
Content-Type = media-type Content-Type = media-type
Date = HTTP-date Date = HTTP-date
ETag = entity-tag
Expect = "100-continue" Expect = "100-continue"
From = mailbox From = mailbox
GMT = %x47.4D.54 ; GMT GMT = %x47.4D.54 ; GMT
HTTP-date = IMF-fixdate / obs-date HTTP-date = IMF-fixdate / obs-date
Host = uri-host [ ":" port ]
IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT
If-Match = "*" / ( [ entity-tag ] *( OWS "," OWS [ entity-tag ] ) )
If-Modified-Since = HTTP-date
If-None-Match = "*" / ( [ entity-tag ] *( OWS "," OWS [ entity-tag ]
) )
If-Range = entity-tag / HTTP-date
If-Unmodified-Since = HTTP-date
Last-Modified = HTTP-date
Location = URI-reference Location = URI-reference
Max-Forwards = 1*DIGIT Max-Forwards = 1*DIGIT
OWS = <OWS, see [RFC7230], Section 3.2.3> OWS = *( SP / HTAB )
RWS = <RWS, see [RFC7230], Section 3.2.3> Proxy-Authenticate = [ challenge ] *( OWS "," OWS [ challenge ] )
Proxy-Authentication-Info = [ auth-param ] *( OWS "," OWS [
auth-param ] )
Proxy-Authorization = credentials
RWS = 1*( SP / HTAB )
Range = ranges-specifier
Referer = absolute-URI / partial-URI Referer = absolute-URI / partial-URI
Retry-After = HTTP-date / delay-seconds Retry-After = HTTP-date / delay-seconds
Server = product *( RWS ( product / comment ) ) Server = product *( RWS ( product / comment ) )
URI-reference = <URI-reference, see [RFC7230], Section 2.7> Trailer = [ field-name ] *( OWS "," OWS [ field-name ] )
URI-reference = <URI-reference, see [RFC3986], Section 4.1>
User-Agent = product *( RWS ( product / comment ) ) User-Agent = product *( RWS ( product / comment ) )
Vary = "*" / ( *( "," OWS ) field-name *( OWS "," [ OWS field-name ] Vary = "*" / ( [ field-name ] *( OWS "," OWS [ field-name ] ) )
) ) Via = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment
] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS
comment ] ) ] )
absolute-URI = <absolute-URI, see [RFC7230], Section 2.7> WWW-Authenticate = [ challenge ] *( OWS "," OWS [ challenge ] )
absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>
absolute-path = 1*( "/" segment )
accept-ext = OWS ";" OWS token [ "=" ( token / quoted-string ) ] accept-ext = OWS ";" OWS token [ "=" ( token / quoted-string ) ]
accept-params = weight *accept-ext accept-params = weight *accept-ext
acceptable-ranges = ( [ range-unit ] *( OWS "," OWS [ range-unit ] )
) / "none"
asctime-date = day-name SP date3 SP time-of-day SP year asctime-date = day-name SP date3 SP time-of-day SP year
auth-param = token BWS "=" BWS ( token / quoted-string )
auth-scheme = token
authority = <authority, see [RFC3986], Section 3.2>
challenge = auth-scheme [ 1*SP ( token68 / ( [ auth-param ] *( OWS
"," OWS [ auth-param ] ) ) ) ]
charset = token charset = token
codings = content-coding / "identity" / "*" codings = content-coding / "identity" / "*"
comment = <comment, see [RFC7230], Section 3.2.6> comment = "(" *( ctext / quoted-pair / comment ) ")"
complete-length = 1*DIGIT
content-coding = token content-coding = token
credentials = auth-scheme [ 1*SP ( token68 / ( [ auth-param ] *( OWS
"," OWS [ auth-param ] ) ) ) ]
ctext = HTAB / SP / %x21-27 ; '!'-'''
/ %x2A-5B ; '*'-'['
/ %x5D-7E ; ']'-'~'
/ obs-text
date1 = day SP month SP year date1 = day SP month SP year
date2 = day "-" month "-" 2DIGIT date2 = day "-" month "-" 2DIGIT
date3 = month SP ( 2DIGIT / ( SP DIGIT ) ) date3 = month SP ( 2DIGIT / ( SP DIGIT ) )
day = 2DIGIT day = 2DIGIT
day-name = %x4D.6F.6E ; Mon day-name = %x4D.6F.6E ; Mon
/ %x54.75.65 ; Tue / %x54.75.65 ; Tue
/ %x57.65.64 ; Wed / %x57.65.64 ; Wed
/ %x54.68.75 ; Thu / %x54.68.75 ; Thu
/ %x46.72.69 ; Fri / %x46.72.69 ; Fri
skipping to change at line 7852 skipping to change at page 184, line 32
/ %x53.75.6E ; Sun / %x53.75.6E ; Sun
day-name-l = %x4D.6F.6E.64.61.79 ; Monday day-name-l = %x4D.6F.6E.64.61.79 ; Monday
/ %x54.75.65.73.64.61.79 ; Tuesday / %x54.75.65.73.64.61.79 ; Tuesday
/ %x57.65.64.6E.65.73.64.61.79 ; Wednesday / %x57.65.64.6E.65.73.64.61.79 ; Wednesday
/ %x54.68.75.72.73.64.61.79 ; Thursday / %x54.68.75.72.73.64.61.79 ; Thursday
/ %x46.72.69.64.61.79 ; Friday / %x46.72.69.64.61.79 ; Friday
/ %x53.61.74.75.72.64.61.79 ; Saturday / %x53.61.74.75.72.64.61.79 ; Saturday
/ %x53.75.6E.64.61.79 ; Sunday / %x53.75.6E.64.61.79 ; Sunday
delay-seconds = 1*DIGIT delay-seconds = 1*DIGIT
field-name = <comment, see [RFC7230], Section 3.2> entity-tag = [ weak ] opaque-tag
etagc = "!" / %x23-7E ; '#'-'~'
/ obs-text
field-content = field-vchar [ 1*( SP / HTAB / field-vchar )
field-vchar ]
field-name = token
field-value = *( field-content / obs-fold )
field-vchar = VCHAR / obs-text
first-pos = 1*DIGIT
hour = 2DIGIT hour = 2DIGIT
http-URI = "http://" authority path-abempty [ "?" query ]
https-URI = "https://" authority path-abempty [ "?" query ]
incl-range = first-pos "-" last-pos
int-range = first-pos "-" [ last-pos ]
language-range = <language-range, see [RFC4647], Section 2.1> language-range = <language-range, see [RFC4647], Section 2.1>
language-tag = <Language-Tag, see [RFC5646], Section 2.1> language-tag = <Language-Tag, see [RFC5646], Section 2.1>
last-pos = 1*DIGIT
mailbox = <mailbox, see [RFC5322], Section 3.4> mailbox = <mailbox, see [RFC5322], Section 3.4>
media-range = ( "*/*" / ( type "/*" ) / ( type "/" subtype ) ) *( OWS media-range = ( "*/*" / ( type "/*" ) / ( type "/" subtype ) ) *( OWS
";" OWS parameter ) ";" OWS parameter )
media-type = type "/" subtype *( OWS ";" OWS parameter ) media-type = type "/" subtype *( OWS ";" OWS parameter )
method = token method = token
minute = 2DIGIT minute = 2DIGIT
month = %x4A.61.6E ; Jan month = %x4A.61.6E ; Jan
/ %x46.65.62 ; Feb / %x46.65.62 ; Feb
/ %x4D.61.72 ; Mar / %x4D.61.72 ; Mar
/ %x41.70.72 ; Apr / %x41.70.72 ; Apr
/ %x4D.61.79 ; May / %x4D.61.79 ; May
/ %x4A.75.6E ; Jun / %x4A.75.6E ; Jun
/ %x4A.75.6C ; Jul / %x4A.75.6C ; Jul
skipping to change at line 7880 skipping to change at page 185, line 26
/ %x4D.61.79 ; May / %x4D.61.79 ; May
/ %x4A.75.6E ; Jun / %x4A.75.6E ; Jun
/ %x4A.75.6C ; Jul / %x4A.75.6C ; Jul
/ %x41.75.67 ; Aug / %x41.75.67 ; Aug
/ %x53.65.70 ; Sep / %x53.65.70 ; Sep
/ %x4F.63.74 ; Oct / %x4F.63.74 ; Oct
/ %x4E.6F.76 ; Nov / %x4E.6F.76 ; Nov
/ %x44.65.63 ; Dec / %x44.65.63 ; Dec
obs-date = rfc850-date / asctime-date obs-date = rfc850-date / asctime-date
obs-fold = <obs-fold, see [Messaging], Section 5.2>
obs-text = %x80-FF
opaque-tag = DQUOTE *etagc DQUOTE
other-range = 1*( %x21-2B ; '!'-'+'
/ %x2D-7E ; '-'-'~'
)
parameter = token "=" ( token / quoted-string ) parameter = parameter-name "=" parameter-value
partial-URI = <partial-URI, see [RFC7230], Section 2.7> parameter-name = token
parameter-value = ( token / quoted-string )
partial-URI = relative-part [ "?" query ]
path-abempty = <path-abempty, see [RFC3986], Section 3.3>
port = <port, see [RFC3986], Section 3.2.3>
product = token [ "/" product-version ] product = token [ "/" product-version ]
product-version = token product-version = token
quoted-string = <quoted-string, see [RFC7230], Section 3.2.6> protocol-name = <protocol-name, see [Messaging], Section 9.9>
qvalue = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] ) protocol-version = <protocol-version, see [Messaging], Section 9.9>
pseudonym = token
qdtext = HTAB / SP / "!" / %x23-5B ; '#'-'['
/ %x5D-7E ; ']'-'~'
/ obs-text
query = <query, see [RFC3986], Section 3.4>
quoted-pair = "\" ( HTAB / SP / VCHAR / obs-text )
quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE
qvalue = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] )
range-resp = incl-range "/" ( complete-length / "*" )
range-set = [ range-spec ] *( OWS "," OWS [ range-spec ] )
range-spec = int-range / suffix-range / other-range
range-unit = token
ranges-specifier = range-unit "=" range-set
received-by = pseudonym [ ":" port ]
received-protocol = [ protocol-name "/" ] protocol-version
relative-part = <relative-part, see [RFC3986], Section 4.2>
request-target = <request-target, see [Messaging], Section 3.2>
rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT
second = 2DIGIT second = 2DIGIT
segment = <segment, see [RFC3986], Section 3.3>
subtype = token subtype = token
suffix-length = 1*DIGIT
suffix-range = "-" suffix-length
tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
"^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
time-of-day = hour ":" minute ":" second time-of-day = hour ":" minute ":" second
token = <token, see [RFC7230], Section 3.2.6> token = 1*tchar
token68 = 1*( ALPHA / DIGIT / "-" / "." / "_" / "~" / "+" / "/" )
*"="
type = token type = token
unsatisfied-range = "*/" complete-length
uri-host = <host, see [RFC3986], Section 3.2.2>
weak = %x57.2F ; W/
weight = OWS ";" OWS "q=" qvalue weight = OWS ";" OWS "q=" qvalue
year = 4DIGIT year = 4DIGIT
Appendix B. Changes from RFC 2616 Appendix B. Changes from previous RFCs
[elided] B.1. Changes from RFC 2818
Index None yet.
1 B.2. Changes from RFC 7230
1xx Informational (status code class) 50
2 The sections introducing HTTP's design goals, history, architecture,
2xx Successful (status code class) 51 conformance criteria, protocol versioning, URIs, message routing, and
header fields have been moved here (without substantive change).
3 "Field value" now refers to the value after multiple instances are
3xx Redirection (status code class) 54 combined with commas -- by far the most common use. To refer to a
single header line's value, use "field line value". (Section 4)
Trailer field semantics now transcend the specifics of chunked
encoding. Use of trailer fields has been further limited to only
allow generation as a trailer field when the sender knows the field
defines that usage and to only allow merging into the header section
if the recipient knows the corresponding field definition permits and
defines how to merge. In all other cases, implementations are
encouraged to either store the trailer fields separately or discard
them instead of merging. (Section 4.6.2)
4 Made the priority of the absolute form of the request URI over the
4xx Client Error (status code class) 58 Host header by origin servers explicit, to align with proxy handling.
(Section 5.6)
5 The grammar definition for the Via field's "received-by" was expanded
5xx Server Error (status code class) 62 in 7230 due to changes in the URI grammar for host [RFC3986] that are
not desirable for Via. For simplicity, we have removed uri-host from
the received-by production because it can be encompassed by the
existing grammar for pseudonym. In particular, this change removed
comma from the allowed set of charaters for a host name in received-
by. (Section 5.7.1)
Added status code 308 (previously defined in [RFC7538]) so that it's
defined closer to status codes 301, 302, and 307. (Section 9.4.9)
Added status code 422 (previously defined in Section 11.2 of
[RFC4918]) because of its general applicability. (Section 9.5.20)
The description of an origin and authoritative access to origin
servers has been extended for both "http" and "https" URIs to account
for alternative services and secured connections that are not
necessarily based on TCP. (Section 2.5.1, Section 2.5.2,
Section 5.2, Section 5.4)
B.3. Changes from RFC 7231
Minimum URI lengths to be supported by implementations are now
recommended. (Section 2.5)
Range units are compared in a case insensitive fashion.
(Section 6.1.4)
Restrictions on client retries have been loosened, to reflect
implementation behavior. (Section 7.2.2)
Clarified that request bodies on GET and DELETE are not
interoperable. (Section 7.3.1, Section 7.3.5)
Removed a superfluous requirement about setting Content-Length from
the description of the OPTIONS method. (Section 7.3.7)
B.4. Changes from RFC 7232
None yet.
B.5. Changes from RFC 7233
Refactored the range-unit and ranges-specifier grammars to simplify
and reduce artificial distinctions between bytes and other
(extension) range units, removing the overlapping grammar of other-
range-unit by defining range units generically as a token and placing
extensions within the scope of a range-spec (other-range). This
disambiguates the role of list syntax (commas) in all range sets,
including extension range units, for indicating a range-set of more
than one range. Moving the extension grammar into range specifiers
also allows protocol specific to byte ranges to be specified
separately.
B.6. Changes from RFC 7235
None yet.
B.7. Changes from RFC 7538
None yet.
B.8. Changes from RFC 7615
None yet.
Appendix C. Change Log
This section is to be removed before publishing as an RFC.
C.1. Between RFC723x and draft 00
The changes were purely editorial:
o Change boilerplate and abstract to indicate the "draft" status,
and update references to ancestor specifications.
o Remove version "1.1" from document title, indicating that this
specification applies to all HTTP versions.
o Adjust historical notes.
o Update links to sibling specifications.
o Replace sections listing changes from RFC 2616 by new empty
sections referring to RFC 723x.
o Remove acknowledgements specific to RFC 723x.
o Move "Acknowledgements" to the very end and make them unnumbered.
C.2. Since draft-ietf-httpbis-semantics-00
The changes in this draft are editorial, with respect to HTTP as a
whole, to merge core HTTP semantics into this document:
o Merged introduction, architecture, conformance, and ABNF
extensions from RFC 7230 (Messaging).
o Rearranged architecture to extract conformance, http(s) schemes,
and protocol versioning into a separate major section.
o Moved discussion of MIME differences to [Messaging] since that is
primarily concerned with transforming 1.1 messages.
o Merged entire content of RFC 7232 (Conditional Requests).
o Merged entire content of RFC 7233 (Range Requests).
o Merged entire content of RFC 7235 (Auth Framework).
o Moved all extensibility tips, registration procedures, and
registry tables from the IANA considerations to normative
sections, reducing the IANA considerations to just instructions
that will be removed prior to publication as an RFC.
C.3. Since draft-ietf-httpbis-semantics-01
o Improve [Welch] citation (<https://github.com/httpwg/http-core/
issues/63>)
o Remove HTTP/1.1-ism about Range Requests
(<https://github.com/httpwg/http-core/issues/71>)
o Cite RFC 8126 instead of RFC 5226 (<https://github.com/httpwg/
http-core/issues/75>)
o Cite RFC 7538 instead of RFC 7238 (<https://github.com/httpwg/
http-core/issues/76>)
o Cite RFC 8288 instead of RFC 5988 (<https://github.com/httpwg/
http-core/issues/77>)
o Cite RFC 8187 instead of RFC 5987 (<https://github.com/httpwg/
http-core/issues/78>)
o Cite RFC 7578 instead of RFC 2388 (<https://github.com/httpwg/
http-core/issues/79>)
o Cite RFC 7595 instead of RFC 4395 (<https://github.com/httpwg/
http-core/issues/80>)
o improve ABNF readability for qdtext (<https://github.com/httpwg/
http-core/issues/81>, <https://www.rfc-editor.org/errata/eid4891>)
o Clarify "resource" vs "representation" in definition of status
code 416 (<https://github.com/httpwg/http-core/issues/83>,
<https://www.rfc-editor.org/errata/eid4664>)
o Resolved erratum 4072, no change needed here
(<https://github.com/httpwg/http-core/issues/84>,
<https://www.rfc-editor.org/errata/eid4072>)
o Clarify DELETE status code suggestions
(<https://github.com/httpwg/http-core/issues/85>,
<https://www.rfc-editor.org/errata/eid4436>)
o In Section 6.3.4, fix ABNF for "other-range-resp" to use VCHAR
instead of CHAR (<https://github.com/httpwg/http-core/issues/86>,
<https://www.rfc-editor.org/errata/eid4707>)
o Resolved erratum 5162, no change needed here
(<https://github.com/httpwg/http-core/issues/89>,
<https://www.rfc-editor.org/errata/eid5162>)
o Replace "response code" with "response status code" and "status-
code" (the ABNF production name from the HTTP/1.1 message format)
by "status code" (<https://github.com/httpwg/http-core/issues/94>,
<https://www.rfc-editor.org/errata/eid4050>)
o Added a missing word in Section 9.4 (<https://github.com/httpwg/
http-core/issues/98>, <https://www.rfc-editor.org/errata/eid4452>)
o In Section 4.5, fixed an example that had trailing whitespace
where it shouldn't (<https://github.com/httpwg/http-core/
issues/104>, <https://www.rfc-editor.org/errata/eid4169>)
o In Section 9.3.7, remove words that were potentially misleading
with respect to the relation to the requested ranges
(<https://github.com/httpwg/http-core/issues/102>,
<https://www.rfc-editor.org/errata/eid4358>)
C.4. Since draft-ietf-httpbis-semantics-02
o Included (Proxy-)Auth-Info header field definition from RFC 7615
(<https://github.com/httpwg/http-core/issues/9>)
o In Section 7.3.3, clarify POST caching
(<https://github.com/httpwg/http-core/issues/17>)
o Add Section 9.5.19 to reserve the 418 status code
(<https://github.com/httpwg/http-core/issues/43>)
o In Section 2.1 and Section 8.1.1, clarified when a response can be
sent (<https://github.com/httpwg/http-core/issues/82>)
o In Section 6.1.1.1, explain the difference between the "token"
production, the RFC 2978 ABNF for charset names, and the actual
registration practice (<https://github.com/httpwg/http-core/
issues/100>, <https://www.rfc-editor.org/errata/eid4689>)
o In Section 2.5, removed the fragment component in the URI scheme
definitions as per Section 4.3 of [RFC3986], furthermore moved
fragment discussion into a separate section
(<https://github.com/httpwg/http-core/issues/103>,
<https://www.rfc-editor.org/errata/eid4251>, <https://www.rfc-
editor.org/errata/eid4252>)
o In Section 3.5, add language about minor HTTP version number
defaulting (<https://github.com/httpwg/http-core/issues/115>)
o Added Section 9.5.20 for status code 422, previously defined in
Section 11.2 of [RFC4918] (<https://github.com/httpwg/http-core/
issues/123>)
o In Section 9.5.17, fixed prose about byte range comparison
(<https://github.com/httpwg/http-core/issues/135>,
<https://www.rfc-editor.org/errata/eid5474>)
o In Section 2.1, explain that request/response correlation is
version specific (<https://github.com/httpwg/http-core/
issues/145>)
C.5. Since draft-ietf-httpbis-semantics-03
o In Section 9.4.9, include status code 308 from RFC 7538
(<https://github.com/httpwg/http-core/issues/3>)
o In Section 6.1.1, clarify that the charset parameter value is
case-insensitive due to the definition in RFC 2046
(<https://github.com/httpwg/http-core/issues/13>)
o Define a separate registry for HTTP header field names
(<https://github.com/httpwg/http-core/issues/42>)
o In Section 8.4, refactor and clarify description of wildcard ("*")
handling (<https://github.com/httpwg/http-core/issues/46>)
o Deprecate Accept-Charset (<https://github.com/httpwg/http-core/
issues/61>)
o In Section 8.2.1, mention Cache-Control: immutable
(<https://github.com/httpwg/http-core/issues/69>)
o In Section 4.1, clarify when header field combination is allowed
(<https://github.com/httpwg/http-core/issues/74>)
o In Section 12.4, instruct IANA to mark Content-MD5 as obsolete
(<https://github.com/httpwg/http-core/issues/93>)
o Use RFC 7405 ABNF notation for case-sensitive string constants
(<https://github.com/httpwg/http-core/issues/133>)
o Rework Section 2.1 to be more version-independent
(<https://github.com/httpwg/http-core/issues/142>)
o In Section 7.3.5, clarify that DELETE needs to be successful to
invalidate cache (<https://github.com/httpwg/http-core/
issues/167>, <https://www.rfc-editor.org/errata/eid5541>)
C.6. Since draft-ietf-httpbis-semantics-04
o In Section 4.4, fix field-content ABNF
(<https://github.com/httpwg/http-core/issues/19>,
<https://www.rfc-editor.org/errata/eid4189>)
o Move Section 4.4.1.4 into its own section
(<https://github.com/httpwg/http-core/issues/45>)
o In Section 6.2.1, reference MIME Sniffing
(<https://github.com/httpwg/http-core/issues/51>)
o In Section 4.5, simplify the #rule mapping for recipients
(<https://github.com/httpwg/http-core/issues/164>,
<https://www.rfc-editor.org/errata/eid5257>)
o In Section 7.3.7, remove misleading text about "extension" of HTTP
is needed to define method payloads (<https://github.com/httpwg/
http-core/issues/204>)
o Fix editorial issue in Section 6 (<https://github.com/httpwg/http-
core/issues/223>)
o In Section 9.5.20, rephrase language not to use "entity" anymore,
and also avoid lowercase "may" (<https://github.com/httpwg/http-
core/issues/224>)
o Move discussion of retries from [Messaging] into Section 7.2.2
(<https://github.com/httpwg/http-core/issues/230>)
C.7. Since draft-ietf-httpbis-semantics-05
o Moved transport-independent part of the description of trailers
into Section 4.6 (<https://github.com/httpwg/http-core/issues/16>)
o Loosen requirements on retries based upon implementation behavior
(<https://github.com/httpwg/http-core/issues/27>)
o In Section 12.9, update IANA port registry for TCP/UDP on ports 80
and 443 (<https://github.com/httpwg/http-core/issues/36>)
o In Section 4.7, revise guidelines for new header field names
(<https://github.com/httpwg/http-core/issues/47>)
o In Section 7.2.3, remove concept of "cacheable methods" in favor
of prose (<https://github.com/httpwg/http-core/issues/54>,
<https://www.rfc-editor.org/errata/eid5300>)
o In Section 11.1, mention that the concept of authority can be
modified by protocol extensions (<https://github.com/httpwg/http-
core/issues/143>)
o Create new subsection on payload body in Section 6.3.3, taken from
portions of message body (<https://github.com/httpwg/http-core/
issues/159>)
o Moved definition of "Whitespace" into new container "Generic
Syntax" (<https://github.com/httpwg/http-core/issues/162>)
o In Section 2.5, recommend minimum URI size support for
implementations (<https://github.com/httpwg/http-core/issues/169>)
o In Section 6.1.4, refactored the range-unit and ranges-specifier
grammars (<https://github.com/httpwg/http-core/issues/196>,
<https://www.rfc-editor.org/errata/eid5620>)
o In Section 7.3.1, caution against a request body more strongly
(<https://github.com/httpwg/http-core/issues/202>)
o Reorganized text in Section 4.7 (<https://github.com/httpwg/http-
core/issues/214>)
o In Section 9.5.4, replace "authorize" with "fulfill"
(<https://github.com/httpwg/http-core/issues/218>)
o In Section 7.3.7, removed a misleading statement about Content-
Length (<https://github.com/httpwg/http-core/issues/235>,
<https://www.rfc-editor.org/errata/eid5806>)
o In Section 11.1, add text from RFC 2818
(<https://github.com/httpwg/http-core/issues/236>)
o Changed "cacheable by default" to "heuristically cacheable"
throughout (<https://github.com/httpwg/http-core/issues/242>)
C.8. Since draft-ietf-httpbis-semantics-06
o In Section 5.7.1, simplify received-by grammar (and disallow comma
character) (<https://github.com/httpwg/http-core/issues/24>)
o In Section 4.3, give guidance on interoperable field names
(<https://github.com/httpwg/http-core/issues/30>)
o In Section 1.2.1, define the semantics and possible replacement of
whitespace when it is known to occur (<https://github.com/httpwg/
http-core/issues/53>)
o In Section 4, introduce field terminology and distinguish between
field line values and field values; use terminology consistently
throughout (<https://github.com/httpwg/http-core/issues/111>)
o Moved #rule definition into Section 4.4 and whitespace into
Section 1.2 (<https://github.com/httpwg/http-core/issues/162>)
o In Section 6.1.4, explicitly call out range unit names as case-
insensitive, and encourage registration
(<https://github.com/httpwg/http-core/issues/179>)
o In Section 6.1.2, explicitly call out content codings as case-
insensitive, and encourage registration
(<https://github.com/httpwg/http-core/issues/179>)
o In Section 4.3, explicitly call out field names as case-
insensitive (<https://github.com/httpwg/http-core/issues/179>)
o In Section 11.11, cite [Bujlow] (<https://github.com/httpwg/http-
core/issues/185>)
o In Section 9, formally define "final" and "interim" status codes
(<https://github.com/httpwg/http-core/issues/245>)
o In Section 7.3.5, caution against a request body more strongly
(<https://github.com/httpwg/http-core/issues/258>)
o In Section 10.2.3, note that Etag can be used in trailers
(<https://github.com/httpwg/http-core/issues/262>)
o In Section 12.4, consider reserved fields as well
(<https://github.com/httpwg/http-core/issues/273>)
o In Section 2.5.4, be more correct about what was deprecated by RFC
3986 (<https://github.com/httpwg/http-core/issues/278>,
<https://www.rfc-editor.org/errata/eid5964>)
o In Section 4.1, recommend comma SP when combining field lines
(<https://github.com/httpwg/http-core/issues/148>)
o In Section 5.6, make explicit requirements on origin server to use
authority from absolute-form when available
(<https://github.com/httpwg/http-core/issues/191>)
o In Section 2.5.1, Section 2.5.2, Section 5.2, and Section 5.4,
refactored schemes to define origin and authoritative access to an
origin server for both "http" and "https" URIs to account for
alternative services and secured connections that are not
necessarily based on TCP (<https://github.com/httpwg/http-core/
issues/237>)
o In Section 1.1, reference RFC 8174 as well
(<https://github.com/httpwg/http-core/issues/303>)
Index
1 1
100 Continue (status code) 50 100 Continue (status code) 121
100-continue (expect value) 34 100-continue (expect value) 88
101 Switching Protocols (status code) 50 101 Switching Protocols (status code) 121
1xx Informational (status code class) 120
2 2
200 OK (status code) 51 200 OK (status code) 121
201 Created (status code) 52 201 Created (status code) 122
202 Accepted (status code) 52 202 Accepted (status code) 122
203 Non-Authoritative Information (status code) 52 203 Non-Authoritative Information (status code) 123
204 No Content (status code) 53 204 No Content (status code) 123
205 Reset Content (status code) 53 205 Reset Content (status code) 124
206 Partial Content (status code) 124
2xx Successful (status code class) 121
3 3
300 Multiple Choices (status code) 55 300 Multiple Choices (status code) 129
301 Moved Permanently (status code) 56 301 Moved Permanently (status code) 130
302 Found (status code) 56 302 Found (status code) 130
303 See Other (status code) 57 303 See Other (status code) 131
305 Use Proxy (status code) 58 304 Not Modified (status code) 131
306 (Unused) (status code) 58 305 Use Proxy (status code) 132
307 Temporary Redirect (status code) 58 306 (Unused) (status code) 132
307 Temporary Redirect (status code) 132
308 Permanent Redirect (status code) 133
3xx Redirection (status code class) 127
4 4
400 Bad Request (status code) 58 400 Bad Request (status code) 133
402 Payment Required (status code) 59 401 Unauthorized (status code) 133
403 Forbidden (status code) 59 402 Payment Required (status code) 134
404 Not Found (status code) 59 403 Forbidden (status code) 134
405 Method Not Allowed (status code) 59 404 Not Found (status code) 134
406 Not Acceptable (status code) 59 405 Method Not Allowed (status code) 135
408 Request Timeout (status code) 60 406 Not Acceptable (status code) 135
409 Conflict (status code) 60 407 Proxy Authentication Required (status code) 135
410 Gone (status code) 60 408 Request Timeout (status code) 135
411 Length Required (status code) 61 409 Conflict (status code) 136
413 Payload Too Large (status code) 61 410 Gone (status code) 136
414 URI Too Long (status code) 61 411 Length Required (status code) 136
415 Unsupported Media Type (status code) 62 412 Precondition Failed (status code) 137
417 Expectation Failed (status code) 62 413 Payload Too Large (status code) 137
426 Upgrade Required (status code) 62 414 URI Too Long (status code) 137
415 Unsupported Media Type (status code) 137
416 Range Not Satisfiable (status code) 138
417 Expectation Failed (status code) 138
418 (Unused) (status code) 138
422 Unprocessable Payload (status code) 139
426 Upgrade Required (status code) 139
4xx Client Error (status code class) 133
5 5
500 Internal Server Error (status code) 63 500 Internal Server Error (status code) 140
501 Not Implemented (status code) 63 501 Not Implemented (status code) 140
502 Bad Gateway (status code) 63 502 Bad Gateway (status code) 140
503 Service Unavailable (status code) 63 503 Service Unavailable (status code) 140
504 Gateway Timeout (status code) 63 504 Gateway Timeout (status code) 140
505 HTTP Version Not Supported (status code) 64 505 HTTP Version Not Supported (status code) 140
5xx Server Error (status code class) 139
A A
Accept header field 38 Accept header field 104
Accept-Charset header field 40 Accept-Charset header field 106
Accept-Encoding header field 41 Accept-Encoding header field 107
Accept-Language header field 42 Accept-Language header field 108
Allow header field 72 Accept-Ranges header field 161
Allow header field 161
Authentication-Info header field 159
Authorization header field 112
accelerator 14
authoritative response 163
B
browser 11
C C
cacheable 24 CONNECT method 83
compress (content coding) 11 Canonical Root URI 111
conditional request 36 Content-Encoding header field 59
CONNECT method 30 Content-Language header field 60
content coding 11 Content-Length header field 61
content negotiation 6 Content-Location header field 62
Content-Encoding header field 12 Content-MD5 header field 173
Content-Language header field 13 Content-Range header field 66
Content-Location header field 15 Content-Type header field 58
Content-Transfer-Encoding header field 89 cache 15
Content-Type header field 10 cacheable 15
captive portal 15
client 11
compress (Coding Format) 52
compress (content coding) 51
conditional request 91
connection 11
content coding 51
content negotiation 9
D D
Date header field 67 DELETE method 82
deflate (content coding) 11 Date header field 145
DELETE method 29 Delimiters 30
deflate (Coding Format) 52
deflate (content coding) 51
downstream 14
E E
Expect header field 34 ETag field 153
Expect header field 88
effective request URI 43
F F
From header field 44 Fields
Accept 104
Accept-Charset 106
Accept-Encoding 107
Accept-Language 108
Accept-Ranges 161
Allow 161
Authentication-Info 159
Authorization 112
Content-Encoding 59
Content-Language 60
Content-Length 61
Content-Location 62
Content-MD5 173
Content-Range 66
Content-Type 58
Date 145
ETag 153
Expect 88
From 115
Host 43
If-Match 95
If-Modified-Since 97
If-None-Match 96
If-Range 100
If-Unmodified-Since 98
Last-Modified 151
Location 146
Max-Forwards 90
Proxy-Authenticate 159
Proxy-Authentication-Info 160
Proxy-Authorization 112
Range 101
Referer 116
Retry-After 147
Server 162
Trailer 34
User-Agent 117
Vary 147
Via 45
WWW-Authenticate 158
Fragment Identifiers 20
From header field 115
field 24
field line 24
field line value 24
field name 24
field value 24
G G
GET method 24 GET method 77
Grammar Grammar
Accept 38 absolute-path 16
Accept-Charset 40 absolute-URI 16
Accept-Encoding 41 Accept 104
accept-ext 38 Accept-Charset 106
Accept-Language 42 Accept-Encoding 107
accept-params 38 accept-ext 104
Allow 72 Accept-Language 108
asctime-date 66 accept-params 104
charset 9 Accept-Ranges 161
codings 41 acceptable-ranges 161
content-coding 11 Allow 161
Content-Encoding 12 ALPHA 10
Content-Language 13 asctime-date 144
Content-Location 15 auth-param 110
Content-Type 10 auth-scheme 110
Date 67 Authentication-Info 159
date1 65 authority 16
day 65 Authorization 112
day-name 65 BWS 11
day-name-l 65 challenge 110
delay-seconds 69 charset 49
Expect 34 codings 107
From 44 comment 31
GMT 65 complete-length 67
hour 65 content-coding 51
HTTP-date 65 Content-Encoding 59
IMF-fixdate 65 Content-Language 60
language-range 42 Content-Length 61
language-tag 13 Content-Location 62
Location 68 Content-Range 67
Max-Forwards 36 Content-Type 58
media-range 38 CR 10
media-type 8 credentials 111
method 21 CRLF 10
minute 65 ctext 31
month 65 CTL 10
obs-date 66 Date 145
parameter 8 date1 144
product 46 day 144
product-version 46 day-name 144
qvalue 38 day-name-l 144
Referer 45 delay-seconds 147
Retry-After 69 DIGIT 10
rfc850-date 66 DQUOTE 10
second 65 entity-tag 154
Server 73 ETag 154
subtype 8 etagc 154
time-of-day 65 Expect 88
type 8 field-content 28
User-Agent 46 field-name 26, 34
Vary 70 field-value 28
weight 38 field-vchar 28
year 65 first-pos 55, 67
gzip (content coding) 11 From 115
GMT 144
HEXDIG 10
Host 43
hour 144
HTAB 10
HTTP-date 143
http-URI 17
https-URI 18
If-Match 95
If-Modified-Since 97
If-None-Match 96
If-Range 100
If-Unmodified-Since 98
IMF-fixdate 144
incl-range 67
int-range 55
language-range 108
language-tag 53
Last-Modified 151
last-pos 55, 67
LF 10
Location 146
Max-Forwards 90
media-range 104
media-type 49
method 73
minute 144
month 144
obs-date 144
obs-text 30
OCTET 10
opaque-tag 154
other-range 55
OWS 11
parameter 31
parameter-name 31
parameter-value 31
partial-URI 16
port 16
product 117
product-version 117
protocol-name 45
protocol-version 45
Proxy-Authenticate 159
Proxy-Authentication-Info 160
Proxy-Authorization 112
pseudonym 45
qdtext 30
query 16
quoted-pair 30
quoted-string 30
qvalue 104
Range 101
range-resp 67
range-set 55
range-spec 55
range-unit 54
ranges-specifier 55
received-by 45
received-protocol 45
Referer 116
Retry-After 147
rfc850-date 144
RWS 11
second 144
segment 16
Server 162
SP 10
subtype 49
suffix-length 55
suffix-range 55
tchar 30
time-of-day 144
token 30
token68 110
Trailer 34
type 49
unsatisfied-range 67
uri-host 16
URI-reference 16
User-Agent 117
Vary 148
VCHAR 10
Via 45
weak 154
weight 104
WWW-Authenticate 158
year 144
gateway 14
gzip (Coding Format) 52
gzip (content coding) 51
H H
HEAD method 25 HEAD method 78
Header Fields
Accept 104
Accept-Charset 106
Accept-Encoding 107
Accept-Language 108
Accept-Ranges 161
Allow 161
Authentication-Info 159
Authorization 112
Content-Encoding 59
Content-Language 60
Content-Length 61
Content-Location 62
Content-MD5 173
Content-Range 66
Content-Type 58
Date 145
ETag 153
Expect 88
From 115
Host 43
If-Match 95
If-Modified-Since 97
If-None-Match 96
If-Range 100
If-Unmodified-Since 98
Last-Modified 151
Location 146
Max-Forwards 90
Proxy-Authenticate 159
Proxy-Authentication-Info 160
Proxy-Authorization 112
Range 101
Referer 116
Retry-After 147
Server 162
Trailer 34
User-Agent 117
Vary 147
Via 45
WWW-Authenticate 158
Host header field 43
header section 24
http URI scheme 17
https URI scheme 18
I I
idempotent 23 If-Match header field 95
If-Modified-Since header field 97
If-None-Match header field 96
If-Range header field 100
If-Unmodified-Since header field 98
idempotent 76
inbound 14
interception proxy 15
intermediary 13
L L
Location header field 68 Last-Modified header field 151
Location header field 146
M M
Max-Forwards header field 36 Max-Forwards header field 90
MIME-Version header field 89 Media Type
multipart/byteranges 68
multipart/x-byteranges 69
message 12
metadata 149
multipart/byteranges Media Type 68
multipart/x-byteranges Media Type 69
N
non-transforming proxy 47
O O
OPTIONS method 31 OPTIONS method 85
origin 37
origin server 11
outbound 14
P P
payload 17 POST method 79
POST method 25 PUT method 80
PUT method 26 Protection Space 111
Proxy-Authenticate header field 159
Proxy-Authentication-Info header field 160
Proxy-Authorization header field 112
payload 64
phishing 163
proxy 14
R R
Referer header field 45 Range header field 101
representation 7 Realm 111
Retry-After header field 69 Referer header field 116
Retry-After header field 147
recipient 11
representation 48
request 12
resource 16
response 12
reverse proxy 14
S S
safe 22 Server header field 162
selected representation 7, 71 Status Code 118
Server header field 73 Status Codes
Final 119
Informational 119
Interim 119
Status Codes Classes Status Codes Classes
1xx Informational 50 1xx Informational 120
2xx Successful 51 2xx Successful 121
3xx Redirection 54 3xx Redirection 127
4xx Client Error 58 4xx Client Error 133
5xx Server Error 62 5xx Server Error 139
safe 75
secured 18
selected representation 48, 91, 149
sender 11
server 11
spider 11
T T
TRACE method 32 TRACE method 86
Trailer Fields
ETag 153
Trailer header field 34
target URI 37
target resource 37
trailer fields 33
trailer section 24
trailers 33
transforming proxy 47
transparent proxy 15
tunnel 14
U U
User-Agent header field 46 URI
origin 37
URI scheme
http 17
https 18
User-Agent header field 117
upstream 14
user agent 11
V V
Vary header field 70 Vary header field 147
Via header field 45
validator 149
strong 150
weak 150
W
WWW-Authenticate header field 158
X X
x-compress (content coding) 11 x-compress (content coding) 51
x-gzip (content coding) 11 x-gzip (content coding) 51
Acknowledgments Acknowledgments
See Section 10 of [RFC7230]. This edition of the HTTP specification builds on the many
contributions that went into RFC 1945, RFC 2068, RFC 2145, RFC 2616,
and RFC 2818, including substantial contributions made by the
previous authors, editors, and Working Group Chairs: Tim Berners-Lee,
Ari Luotonen, Roy T. Fielding, Henrik Frystyk Nielsen, Jim Gettys,
Jeffrey C. Mogul, Larry Masinter, Paul J. Leach, Eric Rescorla, and
Yves Lafon.
This specification takes over the definition of the HTTP See Section 10 of [RFC7230] for further acknowledgements from prior
Authentication Framework, previously defined in RFC 2617. We thank revisions.
John Franks, Phillip M. Hallam-Baker, Jeffery L. Hostetler, Scott D.
Lawrence, Paul J. Leach, Ari Luotonen, and Lawrence C. Stewart for In addition, this document has reincorporated the HTTP Authentication
their work on that specification. See Section 6 of [RFC2617] for Framework, previously defined in RFC 7235 and RFC 2617. We thank
John Franks, Phillip M. Hallam-Baker, Jeffery L. Hostetler, Scott
D. Lawrence, Paul J. Leach, Ari Luotonen, and Lawrence C. Stewart
for their work on that specification. See Section 6 of [RFC2617] for
further acknowledgements. further acknowledgements.
[[newacks: New acks to be added here.]]
Authors' Addresses Authors' Addresses
Roy T. Fielding (editor) Roy T. Fielding (editor)
Adobe Systems Incorporated Adobe
345 Park Ave 345 Park Ave
San Jose, CA 95110 San Jose, CA 95110
USA United States of America
EMail: fielding@gbiv.com EMail: fielding@gbiv.com
URI: http://roy.gbiv.com/ URI: https://roy.gbiv.com/
Mark Nottingham (editor)
Fastly
EMail: mnot@mnot.net
URI: https://www.mnot.net/
Julian F. Reschke (editor) Julian F. Reschke (editor)
greenbytes GmbH greenbytes GmbH
Hafenweg 16 Hafenweg 16
Muenster, NW 48155 Muenster 48155
Germany Germany
EMail: julian.reschke@greenbytes.de EMail: julian.reschke@greenbytes.de
URI: http://greenbytes.de/tech/webdav/ URI: https://greenbytes.de/tech/webdav/
 End of changes. 913 change blocks. 
2429 lines changed or deleted 3920 lines changed or added

This html diff was produced by rfcdiff 1.46. The latest version is available from http://tools.ietf.org/tools/rfcdiff/